
Technische Universität Berlin
Fakultät IV – Elektrotechnik und Informatik

Lehrstuhl für Intelligente Netze
und Management Verteilter Systeme

Multi-Path Aware Internet Transport Selection

vorgelegt von
Dipl.-Inform.

Philipp S. Tiesel
geb. in Berlin-Steglitz

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Rolf Niedermeyer, TU-Berlin
Gutachterin: Prof. Anja Feldmann, Ph. D., TU Berlin
Gutachter: Prof. Steve Uhlig, Ph. D, Queen Mary University of London
Gutachter: Prof. Olivier Bonaventure, Ph. D, Université catholique de Louvain

Tag der wissenschaftlichen Aussprache: 29. März 2018

Berlin 2019

DOI: https://doi.org/10.14279/depositonce-7830

This work is licensed under a Creative Commons
Attribution 4.0 International License (CC-BY).

This work was supported in part by the EU project CHANGE (FP7-ICT-257422)
and Leibniz Prize project funds of DFG (Leibniz-Preis 2011 – FKZ FE 570/4-1).

https://doi.org/10.14279/depositonce-7830
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.change-project.eu/
https://www.dfg.de/gefoerderte_projekte/wissenschaftliche_preise/leibniz-preis/2011/feldmann/

For my lovely monsters.

Abstract

When the Internet experiment started more than 30 years ago, no one could foresee
its expansion — What started as an experiment to interconnect a few research
computers has become an essential global infrastructure of humanity. Originally,
there was usually only one way to transport data between two computers; this
has changed dramatically — today’s Internet offers us way more diverse transport
options: Most end hosts are connected via multiple paths to the Internet, most
content on the Internet is available on multiple servers, and there is a variety of
transport protocols available to meet the needs of different applications.

In this thesis, we tackle the problem of how to exploit Internet transport diversity
to improve applications’ performance. More specifically, we discuss how to choose
among transport options, how to realize multi-path aware transport option selection
at the clients’ operating system, and take a glimpse at the performance benefits we
can achieve using transport option selection.

To reason about transport options and how to choose among them, we characterize
three dimensions of transport diversity on the Internet: paths, endpoints, and proto-
col alternatives. We analyze a representative set of Internet Protocols with regards
to the functionality and the granularity of control they provide and how they can
be combined.

To realize multi-path aware transport option selection at the clients’ operating sys-
tem (OS), the OS needs to know what to optimize for. Therefore, we introduce the
concept of Socket Intents; a means for applications to share their knowledge about
their communication pattern and express performance preferences in a generic and
portable way. We sketch a generic policy framework that enables the OS to choose
suitable transport options while taking the interests of stakeholders like users, ven-
dors and network operators into account.

To estimate the performance benefits we can achieve using path- selection, we ana-
lyze the benefits of using our Earliest Arrival First (EAF) path selection strategy for
Web browsing. The EAF schedules the transfer over the path or path combination
that minimizes the expected transfer time. We estimate the possible performance
benefits in a custom simulator with a full factorial experimental design covering
the Alexa Top 100 and Top 1000 Web sites and a small testbed study using our
prototype and demonstrate significant performance benefits.

We demonstrate the implementability of path selection and endpoint selection, we
implement our Multi-Access Prototype as an extension to the BSD Socket API.
Our prototype enables connection reuse via implicit connection pooling and can
control the path-management of MPTCP, but also reveals limitations originating
by the BSD Socket API. Finally, we give an outlook of the challenges for deploying
automated transport option selection within commodity OSes and underline the
need for a replacement of the BSD Socket API.

i

Zusammenfassung

Zu Beginn des Internets konnte niemand dessen Erfolg erahnen. Was als Verbund
weniger Großrechner in ausgewählten Forschungsinstituten begann, ist heute, über
30 Jahre später, zu einer für die ganze Menschheit wichtigen Infrastruktur geworden.
Gab es zu Beginn des Internets meist nur eine Möglichkeit, bestimmte Inhalte zu
beziehen, sehen wir uns heute mit einer Fülle verschiedener Optionen konfrontiert.
So haben die meisten Endgeräte heutzutage mehrere Zugangswege zum Internet,
z.B. Mobilfunk und WLAN, Inhalte werden von verschiedenen Quellen angeboten,
und es gibt spezialisierte Protokolle für so ziemlich jedes Anforderungsprofil.

Diese Arbeit beschäftigt sich mit der Frage, wie man diese Vielfalt an Kommunika-
tionsoptionen sinnvoll nutzen kann. Dabei konzentrieren wir uns auf drei Kernfra-
gen: Die Auswahl aus den vorhandenen Kommunikationsoptionen, die Realisierung
eines Auswahlmechanismus als Betriebssystemkomponente und die erzielbaren Per-
formancegewinne.

Um die Vor- und Nachteile der einzelnen Kommunikationsoptionen im Internet ge-
geneinander abwägen zu können, charakterisieren wir ihre drei Dimensionen: Zu-
gangsnetze, Gegenstellen und Protokollkombinationen. Wir analysieren die einzel-
nen Kommunikationsoptionen innerhalb ihrer Kategorie und analysieren verschie-
dene Protokolle auf Basis ihrer Funktionalität, ihrer Abstraktionstiefe und ihrer
Kombinierbarkeit.

Um eine sinnvolle Auswahl zwischen den verfügbaren Kommunikationsoptionen im
Betriebssystem zu treffen, muss das Betriebssystem wissen, woraufhin es optimieren
soll. Dazu führen wir mit Socket Intents eine Abstraktion ein, die es den Anwendun-
gen ermöglicht, ihr Wissen über ihre Kommunikationsmuster und ihre Präferenzen
dem Betriebssystem auf entwicklerfreundliche Weise verfügbar zu machen. Darüber
hinaus entwerfen wir ein Framework, das es ermöglicht, basierend auf diesem Wissen
und den Anforderungen verschiedener Beteiligter, wie z.B. Nutzer, Anwendungsent-
wickler und Kommunikationsanbieter, geeignete Kombination auszuwählen.

Als Beispiel für eine Zugangsnetzauswahlstrategie stellen wir unsere EAF-Strategie
vor, die für jede zu übertragenden Datei die Kombination an Zugangsnetzen aus-
wählt, die die kürzeste Übertragungszeit verspricht. Wir evaluieren die aus dieser
Strategie resultierenden Performancegewinne beim Websiteaufruf unter Verwendung
eines Simulators für die Alexa Top 100 und Top 1000 Websites und unter Verwen-
dung unseres Prototypen für eine kleine Websiteauswahl. Die Ergebnisse zeigen sig-
nifikante Performancesteigerungen in der Mehrzahl der betrachteten Szenarien.

Wir zeigen die Realisierbarkeit von automatischer Zugangsnetzwahl mit Hilfe ei-
ner prototypischen Implementierung auf Basis der BSD-Socketschnittstelle. Unser
Prototyp erlaubt es, Verbindungen innerhalb von impliziten Verbindungspools wie-
derzuverwenden und die Pfadwahl von zu MPTCP beeinflussen, zeigt aber auch die
von der BSD-Socketschnittstelle induzierten Limitierungen auf. Als Abschluss geben
wir einen Ausblick darauf, wie diese Features in verbreitete Betriebssysteme Einzug
halten können und erklären, warum ein Ersatz für die BSD-Socketschnittstelle dafür
zwingend notwendig ist.

iii

Acknowledgements

I first have to thank my spouse-monster Anja Tiesel for enabling me to finish this
thesis by taking over most of the daily chores and having my back wherever she
could. I thank her for staying with me through troubled times, illness and ever-
changing life. I also have to apologize to my kid-monster Finn for having to bear
me uselessly typing onto the computer keyboard instead of doing useful things like
building wooden railway tracks. You are awesome and the most important thing in
my life.

Next, I want to acknowledge my colleague Theresa Enghardt. Theresa joined my
Multi-Access project early on for her master thesis about Socket Intents. Today,
she is the major driver of the Multi-Access Prototype, our queen of policies and
metrics, and a good friend. Thank you, Theresa, for sticking with the project and
me despite all the complications.

I thank my advisor Anja Feldmann for giving me a chance to start from scratch
with my Ph.D. after two years that nearly broke me. I thank her for keeping trust
in me through difficult times, discussing and helping to refine all these strange ideas
that lead to the Multi-Access projects and this thesis, and for all the support and
feedback she gave me.

Special gratitude to Steve Uhlig, who helped me to get started at TU Berlin and
was there to give me advice when I needed it most. Thanks to Ruben Merz for his
inspiration leading me away from SDN for cellular backbones and towards the topic
of this thesis. I also want to thank me Mirja Kühlewind and Brian Trammell for
inviting me to the IAB SEMI workshop which got me into the IETF and therefore
resulted in a new perspective on how to do network research.

Thanks to my collaborators Mirko Palmer and Ramin Kahili as well as to the stu-
dents Patrick Kutter, Tobias Kaiser, and Bernd May — you all helped to make this
happen. Also, I want to thank my colleagues Franziska Lichtblau, Doris Schiöberg,
Florian Streibelt, Tobias Fiebig, Rainer May and our admin team for supporting
and sometimes just bearing with me.

Finally, I have to thank my long and faithful friends, in particular, Robert S. Plaul,
Leonie Kücholl, Jennifer Gabriel, and Cordelia Sommhammer for backing and sup-
porting me whenever needed during the last strenuous years.

v

Publications & Collaborations

Parts of this thesis are collaborative work or are based on peer-reviewed papers
that have already been published. All collaborators to this thesis are listed here —
either as Authors of joined publications or with their kind of collaboration. Some
publications were made under my name of birth Philipp S. Schmidt.

International Conferences

Philipp S. Schmidt, Theresa Enghardt, Ramin Khalili, and Anja Feldmann. “Socket
Intents: Leveraging Application Awareness for Multi-access Connectivity”. In: ACM
CoNEXT. Santa Barbara, California, USA: ACM, 2013, pp. 295–300. isbn: 978-1-
4503-2101-3. doi: 10.1145/2535372.2535405

Workshops

Philipp S. Schmidt, Ruben Merz, and Anja Feldmann. “A first look at multi-access
connectivity for mobile networking”. In: Proceedings of the 2012 ACM workshop on
Capacity sharing. CSWS ’12. Nice, France: ACM, 2012, pp. 9–14. isbn: 978-1-
4503-1780-1. doi: 10.1145/2413219.2413224

Philipp S. Tiesel, Bernd May, and Anja Feldmann. “Multi-Homed on a Single
Link: Using Multiple IPv6 Access Networks”. In: Proceedings of the 2016 Applied
Networking Research Workshop. ANRW ’16. Berlin, Germany: ACM, 2016, pp. 16–
18. isbn: 978-1-4503-4443-2. doi: 10.1145/2959424.2959434

Pre-Prints

Philipp S. Tiesel, Theresa Enghardt, Mirko Palmer, and Anja Feldmann. Socket
Intents: OS Support for Using Multiple Access Networks and its Benefits for Web
Browsing. Submitted to ACM/IEEE Transactions on Networking, initial version
(June 2017) accepted with major revision, revised version (Apr. 2018) rejected.
Apr. 2018. arXiv: 1804.08484

vii

https://doi.org/10.1145/2535372.2535405
https://doi.org/10.1145/2413219.2413224
https://doi.org/10.1145/2959424.2959434
https://arxiv.org/abs/1804.08484

Publications & Collaborations

Internet Drafts

Philipp Tiesel, Theresa Enghardt, and Anja Feldmann. Communication Units
Granularity Considerations for Multi-Path Aware Transport Selection. Internet-
Draft draft-tiesel-taps-communitgrany-01. IETF Secretariat, Oct. 2017. url: http:

//www.ietf.org/internet-drafts/draft-tiesel-taps-communitgrany-01.txt

Philipp Tiesel, Theresa Enghardt, and Anja Feldmann. Socket Intents. Internet-
Draft draft-tiesel-taps-socketintents-01. IETF Secretariat, Oct. 2017. url: http:

//www.ietf.org/internet-drafts/draft-tiesel-taps-socketintents-01.txt

Philipp Tiesel and Theresa Enghardt. A Socket Intents Prototype for the BSD
Socket API - Experiences, Lessons Learned and Considerations. Internet-Draft
draft-tiesel-taps-socketintents-bsdsockets-01. IETF Secretariat, Mar. 2018. url:
https://www.ietf.org/archive/id/draft-tiesel-taps-socketintents-bsdsockets-

01.txt

Collaborations

The design and implementation of the Multi-Access Prototype described in Chap-
ter 6 as well the formulation of the individual Socket Intents in Chapter 3 was done
in tight collaboration with Theresa Enghardt. The Path Characteristics Data Col-
lectors framework in Section 6.3.3 was done by Theresa Enghardt. The Multipath-
TCP integration of the Multi-Access Prototype (Section 6.3.4) was done by Mirko
Palmer [8]. The augmented name resolution API variant (Section 6.3.1.2) was part
of the Bachelor Thesis of Tobias Kaiser [9] under my supervision.

The Web transfer Simulator used in Chapter 5 was joint work with Mirko Palmer.

Some ideas on how to structure policies in Chapter 4 are based on discussions with
Brian Trammell, Tommy Pauly, Mirja Kühlewind, Anna Brunstrom and Gorry
Fairhurst in context of the IETF TAPS Working Group.

viii

http://www.ietf.org/internet-drafts/draft-tiesel-taps-communitgrany-01.txt
http://www.ietf.org/internet-drafts/draft-tiesel-taps-communitgrany-01.txt
http://www.ietf.org/internet-drafts/draft-tiesel-taps-socketintents-01.txt
http://www.ietf.org/internet-drafts/draft-tiesel-taps-socketintents-01.txt
https://www.ietf.org/archive/id/draft-tiesel-taps-socketintents-bsdsockets-01.txt
https://www.ietf.org/archive/id/draft-tiesel-taps-socketintents-bsdsockets-01.txt

Publications & Collaborations

Post-Published Work

The following Internet Drafts have been published after the initial version of this
thesis was presented to the committee, but are reflected in several chapters of the
final version as part of future work, outlook and conclusion.

Tommy Pauly, Brian Trammell, Anna Brunstrom, Gorry Fairhurst, Colin Perkins,
Philipp Tiesel, and Christopher Wood. An Architecture for Transport Services.
Internet-Draft draft-ietf-taps-arch-02. IETF Secretariat, Oct. 2018. url: https:

//www.ietf.org/archive/id/draft-ietf-taps-arch-02.txt

Brian Trammell, Michael Welzl, Theresa Enghardt, Gorry Fairhurst, Mirja Kuehlewind,
Colin Perkins, Philipp Tiesel, and Christopher Wood. An Abstract Application Layer
Interface to Transport Services. Internet-Draft draft-ietf-taps-interface-02. IETF
Secretariat, Oct. 2018. url: https://www.ietf.org/archive/id/draft-ietf-taps-

interface-02.txt

Anna Brunstrom, Tommy Pauly, Theresa Enghardt, Karl-Johan Grinnemo, Tom
Jones, Philipp Tiesel, Colin Perkins, and Michael Welzl. Implementing Interfaces to
Transport Services. Internet-Draft draft-ietf-taps-impl-02. IETF Secretariat, Oct.
2018. url: https://www.ietf.org/archive/id/draft-ietf-taps-impl-02.txt

ix

https://www.ietf.org/archive/id/draft-ietf-taps-arch-02.txt
https://www.ietf.org/archive/id/draft-ietf-taps-arch-02.txt
https://www.ietf.org/archive/id/draft-ietf-taps-interface-02.txt
https://www.ietf.org/archive/id/draft-ietf-taps-interface-02.txt
https://www.ietf.org/archive/id/draft-ietf-taps-impl-02.txt

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions . 3
1.3 Structure of this Thesis . 4

2 Transport Options 5
2.1 The Internet Protocol Stack . 6
2.2 Revisiting the End-to-End Argument 7
2.3 Communication Units . 9

2.3.1 Problem Statement . 9
2.3.2 Communication Units: A Semantic Perspective 9
2.3.3 Communication Unit Granularities 11

2.4 Analysis: Communication Units and PDUs 13
2.4.1 Application Layer . 14
2.4.2 Transport layer . 15
2.4.3 Network Layer . 16

2.5 Path Selection . 17
2.5.1 Path Selection vs. Scheduling 17
2.5.2 Path Characteristics . 18
2.5.3 Provisioning Domains . 18
2.5.4 On-Path Network Functions 19
2.5.5 Path Selection through Network Function 20
2.5.6 Path Selection and Cellular Networks 20

2.6 Analysis: Path Selection Opportunities 21
2.6.1 Network Layer . 22
2.6.2 Transport Layer . 23
2.6.3 Application Layer . 23

2.7 Endpoint Selection . 24
2.7.1 Name Resolution . 25

2.8 Protocol Stack Composition . 25
2.9 Transport Mechanisms for Protocol Stack Composition 27

2.9.1 Reliability . 27
2.9.2 Ordering . 28
2.9.3 Integrity Protection . 28
2.9.4 Confidentiality Protection . 28
2.9.5 Authenticity Protection . 29
2.9.6 Congestion Control . 29
2.9.7 Multiplexing . 30
2.9.8 Chunking . 30

xi

Contents

2.9.9 Path Selection . 32
2.9.10 Mobility . 32

2.10 Analysis: Transport Mechanisms . 33
2.10.1 Congestion Control . 34
2.10.2 Ordering and Reliability . 34
2.10.3 Integrity, Confidentiality, and Authenticity Protection 35
2.10.4 Chunking . 36
2.10.5 Multiplexing . 37

2.11 Cost and Granularity Tradeoffs . 37
2.12 Conclusion . 38

3 Socket Intents: Expressing Applications’ Intents 39
3.1 Motivation . 39
3.2 Problem Statement . 40
3.3 Socket Intents Concept . 41
3.4 Socket Intent Types . 42
3.5 Usage Examples . 44

3.5.1 OS Upgrade . 44
3.5.2 HTTP Streaming . 45
3.5.3 SSH . 45

3.6 Related Work . 46
3.7 Discussion . 46

3.7.1 Socket Intents and API behavior 46
3.7.2 Applicability of Socket Intents to different Communication Units 47
3.7.3 Interactions between Socket Intents and QoS 48
3.7.4 Security Considerations . 48
3.7.5 Interactions between Socket Intents and Traffic Pattern . . . 49

3.8 Conclusion . 50

4 Policy: Choosing Transport Options 51
4.1 Policy Dependencies . 52
4.2 Determining Transport Configurations 54
4.3 Policy entries . 56
4.4 Filtering and Ranking Transport Configurations 57
4.5 Probing Transport Configurations: Happy Eyeballs on Steroids . . . 57
4.6 Conclusion . 58

5 Performance Study: Web Site Delivery 59
5.1 Methodology . 60

5.1.1 Metric: Page Load Time . 60
5.1.2 Using a Custom Simulator . 60
5.1.3 Network Scenario . 61
5.1.4 Connection Limits and Connection Reuse 62
5.1.5 TCP Simulation . 62
5.1.6 MPTCP Simulation . 63

xii

Contents

5.2 Simulator Policies . 63
5.2.1 Baseline Policies . 64
5.2.2 MPTCP . 64
5.2.3 Earliest Arrival First Policy 64

5.3 Simulator Workload . 65
5.3.1 Web Workload Acquisition 65
5.3.2 Web Workload Properties . 66
5.3.3 Web Object Dependencies . 66

5.4 Web Transfer Simulator . 67
5.4.1 Simulator Design . 67
5.4.2 Simulator Implementation . 68

5.5 Web Transfer Simulator Validation 69
5.5.1 Handcrafted Scenarios . 70
5.5.2 Simulator vs. Actual Web Load Times 70
5.5.3 Simulator vs. Multi-Access Prototype 71

5.6 Evaluation . 72
5.6.1 Experimental Design . 72
5.6.2 Benefits of Combining Multiple Paths 73
5.6.3 Benefits of Using the Application-Aware Policies with MPTCP 75
5.6.4 Explaining Page Load Time Speedups 76

5.7 Conclusion . 78

6 Multi-Access Prototype for BSD Sockets 79
6.1 Lecacy of the Socket API . 80

6.1.1 File Descriptor vs. Transport Protocol Semantics 80
6.1.2 Multi-Homing and Multiple Access Networks 81
6.1.3 Name Resolution . 82

6.2 Design Criteria for Multi-Access Prototype 83
6.3 Implementation . 84

6.3.1 Augmented Socket API . 85
6.3.2 The Multiple Access Manager (MAM) 92
6.3.3 Path Characteristics Data Collectors 94
6.3.4 Orchestrating Multipath TCP 94
6.3.5 Policy Implementation . 95

6.4 A Web Proxy with Socket Intents . 97
6.4.1 Testbed Setup . 97
6.4.2 Cross-Validation of Proxy and Simulator 98
6.4.3 Socket Intent Benefits in the Testbed 100

6.5 Lessons Learned . 102
6.5.1 Platform Dependent APIs . 102
6.5.2 The Missing Link to Name Resolution 102
6.5.3 Asynchronous I/O . 103
6.5.4 Here Be Dragons hiding in Shadow Structures 104
6.5.5 Changing Applications to Use Better APIs is Hard 104

6.6 Conclusion and Outlook . 105

xiii

Contents

7 Conclusion 107
7.1 Summary . 107
7.2 Lessons Learned . 109
7.3 Future Work . 110
7.4 Outlook . 111

Glossary 113

Bibliography 117

xiv

List of Figures

2.1 The narrow waist of the Internet. 6
2.2 Communication Units vs PDUs. 10
2.3 Multiple L3 Access Networks on a Single L2 Link. 19
2.4 Example of different kinds of chunking in the Internet that a TCP

flow may experience. 31

3.1 Socket Intents passed to operating system (OS) via the Socket API. 41

4.1 Dependencies between Transport options a Policy has to Respect. . 52
4.2 Partial example of a tree representation used by our generic policy

framework. 55

5.1 Simplified Network Scenario. 62
5.2 Web workload properties. 66
5.3 Simplified Simulator State Example. 69
5.4 Simulator validation: Probability distribution of relative and absolute

difference of simulated time vs. actual page load time. 71
5.5 ECDF of Speedups vs. Interface 1 for the Alexa Top 100 workload. 73
5.6 ECDF of Speedups between 1 and 5. vs. Interface 1 for the Alexa

Top 100 workload. 74
5.7 ECDF of Speedups vs. Interface 1 for the Alexa Top 1000 workload. 74
5.8 ECDF of Speedups vs. MPTCP if1/rnd for the Alexa Top 100 work-

load. 75
5.9 Level of speedup of the EAF policy achieved for Alexa Top 100:

Network Scenario Factors . 77
5.10 Level of speedup of the EAF policy achieved for Alexa Top 100: Web

Page Properties . 77

6.1 Interactions between Network Stack and Multi-Access Manager. . . 84
6.2 Architecture of the Multi-Access Manager (MAM). 92
6.3 Interactions between Multi-Access Prototype components. 93
6.4 Testbed setup used in the emulation. 97
6.5 Comparison of simulated load time and actual load time in the testbed

with different synthetic workloads. 99
6.6 Proxy: Page load times. 101

xv

List of Tables

2.1 Internet Protocols’ Granularity and Interfaces 14
2.2 Internet Protocols Performing Path Selection 22
2.3 Internet Protocols’ Transport Services 33

3.1 Socket Intents Types . 43
3.2 Socket Intents Types – Enum Values 43

5.1 Levels of the Factorial Experimental Design. 72
5.2 Observations within the Levels of Speedup 76

6.1 Classic API Variant: Socket API with Socket Intents. 86
6.2 Augmented Name Resolution API Variant: Modified Socket API Calls. 88
6.3 Message-Granularity API Variant: Added Socket API Calls. 90
6.4 Callbacks implemented by a Typical Policy Module 95
6.5 Testbed shaper: Network parameters. 98

xvii

1
Introduction

Thirty years ago, most computers connected to the Internet where servers located
at universities or research institutes. These hosts were shared by many concurrent
users and usually had only a single connection to the Internet. Since then, the
Internet underwent substantial changes. Today, almost everyone uses the Internet
in some way. The players involved in the Internet and its structure changed: In-
stead of a few leased lines between research institutes, the Internet has become a
complex ecosystem that includes thousands of (commercial) players, networks, and
protocols.

In today’s Internet, the predominant number of hosts are mobile devices with a
single user: Smartphones, tablets, and laptops. These devices often have built-in
interfaces for WiFi and cellular, whereby each of these interfaces typically provides
at least one path to access the Internet.

In principle, applications could take advantage of the different characteristics of
these access networks, e.g., delay, bandwidth, and expected availability, by choosing
the path that meets the communication needs best:

• For video streaming applications like Youtube, bandwidth is most crucial.
• For voice calls packet loss and latency are important.
• Push notifications channels should be resilient and energy efficient.
• Software updates should afflict the lowest cost possible.

By using multiple interfaces at the same time, it is also possible to aggregate the
bandwidth of multiple access networks or use the interfaces to gain redundant com-
munication channels, e.g., to compensate the loss of connectivity when moving out
of reach of one of the access networks.

However, when communicating over the Internet, there are more choices than just
choosing among access networks. Let’s review other options we have when initiating
a connection: Each communication takes place between at least two endpoints, i.e.,
a host or an application. As a single host does not have the resources to serve
popular content to a large user base, there are often several copies of that content
distributed across mirror servers forming a content delivery networks (CDNs). Thus,
if content is available from multiple servers, applications can choose among these
when fetching the content.

1

Chapter 1 Introduction

To establish the connection, we also need a transport service: A set of protocols
that implements the functionality the endpoints need to communicate through the
Internet. There exist hundreds of diverse protocols providing transport services of
different kinds, e.g., HTTP/1.1 over TLS over TCP over IPv4 or HTTP/3 over
QUIC over UDP over IPv6. Depending on the applications’ requirements, there
may be multiple suitable combinations of protocols that can provide the transport
services needed. Choosing a stack from these protocols completes the set of choices
available.

These choices form the three dimensions of what we, throughout this thesis, call
transport diversity: paths, endpoints, and protocol alternatives. Each path, end-
point, or element of a protocol stack available adds an option the endpoint can
choose from. Thus, we call each of them a transport option. For each communica-
tion or transfer, an endpoint can choose a set of transport options which we then
refer to as a transport configuration.

Endpoints that want to take advantage of transport diversity usually use their own
heuristics for selecting a suitable transport configuration. This can be an extremely
complex task, as each transport option comes with a bewildering set of trait-offs,
e.g., regarding performance and guarantees. Determining these may require system
privileges, historical knowledge, or active probing.

Traditionally, operating systems (OSes) usually use only one network interface at
a time or allow fixing them on a per-application basis. Modern advances allow
automatic and adaptive switching between interfaces, e.g., in case of weak WiFi
reception[13] or add support for splitting TCP flows with MPTCP [14–16].

However, there is no way for the OS to precisely match the communication needs
of an application to the most suitable set of transport options. One reason is that
from the perspective the default programming interface for communication on the
Internet, the BSD Socket API, all transfers look the same. For most applications,
selecting the most suitable transport options is infeasible because of the complex-
ity and the elevated privileges needed to access crucial performance information.
Consequently, the available transport diversity is usually not exploited.

1.1 Problem Statement

The overarching question of this thesis is how to exploit Internet transport
diversity to improve applications’ performance. As this question is fairly
general, we break it down into three questions that tackle individual aspects:

• How to choose among transport options?

• How to realize transport option selection at the clients’ OS?

• What are the performance benefits we can achieve using transport
option selection?

2

1.2 Contributions

1.2 Contributions

To tackle the first aspect, we need to understand what transport options are avail-
able, determine their properties, and systematize them. We need to understand how
we can combine transport options, i.e., destinations, paths, transport protocols and
protocol options available, into transport configurations and find a way to assess
and compare these transport configurations.

• By introducing the three dimensions of transport diversity and analyzing a
representative set of Internet protocols, this thesis provides a basis to compose
protocol stacks automatically.

In order to enable almost all applications to take advantage of transport diversity,
exploiting it should be as automated and easy to use as possible. As we do not want
to require applications to deal with each detail of the available transport options
and do not want to introduce additional complexity, the network subsystem of the
OS is the natural place to handle transport diversity. In the network subsystem, all
communication, crucial performance information and, the complete interface config-
uration is visible. This unique position enables joint optimizations across application
boundaries, including coordinated bandwidth management and sharing of protocol
state. However, in order to choose the most suitable transport configuration for the
application, we need to know what the applications intents to do — What kind of
transfer is expected and what guarantees the application wants or needs — and find
a representation that allows taking these intents as an input to transport option
selection. Therefore, our contributions towards the second aspect of the problem
statement are:

• With Socket Intents, we provide means for applications to share their knowl-
edge about their communication pattern with the OS and express performance
preferences in a generic and portable way.

• We sketch a generic policy framework that allows users, vendors and net-
work operators to express their interests towards transport option selection.
Within this framework, we provide a strategy to select suitable transport con-
figurations based on the system state, the Socket Intents, and the different
interests expressed by the different stakeholders. The best-ranked transport
configurations chosen by the policy framework then compete in a connection-
establishment race — Happy Eyeballs on Steroids — to choose the best trans-
port configuration.

• We demonstrate the feasibility of transport option selection within
the OS by implementing a working prototype on top of the BSD Socket API
that realizes path selection and endpoint selection.

Finally, we need a strategy to choose the most appropriate transport options, com-
bine them into transport configurations. This strategy needs to take the applica-
tions’ intents, the available transport configurations, their properties and the re-
quirements of other stakeholders into account. Therefore, to approach the third

3

Chapter 1 Introduction

aspect of the problem statement, we want to evaluate the potential of a concrete
application aware strategy for a single use-case: Improving Web performance by
using multiple paths.

• We provide a first application and path aware policy — the EAF policy —
that improves Web performance.

• We estimate the possible performance benefits in a custom simulator
using a full factorial experimental design covering the Alexa Top 100 and Top
1000 Web sites for a wide range of network characteristics.

• We evaluate the EAF policy and our prototype in a small testbed study
using a few selected Web sites.

1.3 Structure of this Thesis

The initial part of the thesis is concerned with analyzing the transport diversity
provided by the Internet and sketching the building blocks needed to realize trans-
port option selection within the OS. In Chapter 2, we analyze the three dimensions
of transport diversity — path selection, endpoint selection, and protocol stack com-
position. We introduce the notion of communication units, i.e., slices of a commu-
nication that have a semantic and can be distinguished at the respective layer, to
reason about the granularity of communication at which transport option selection
can be performed. Moreover, we analyze a set of mechanisms, i.e., functionalities
that are provided by Internet protocols as part of their transports service. We use
this terminology to analyze a representative set of Internet Protocols with regards
to how they interact with transport option selection and on what granularity of
communication units they can be used. In Chapter 3, we introduce the concept of
Socket Intents. Socket Intents allow applications to express what they know about
their communication patterns and preferences in a generic and portable way. The
information collected about the possible paths, endpoints, and protocol stack com-
positions combined with the intents of the application provided using Socket Intents
completes the basis needed for transport option selection within the OS. We present
our generic policy framework that uses this information for choosing and ranking
transport configurations in Chapter 4.

The second part of the thesis evaluates two aspects of transport option selection:
The performance benefits that can be achieved and the feasibility of performing
transport option selection within the OS In Chapter 5, we demonstrate the perfor-
mance benefits of one prominent use-case for transport option selection: Improving
Web browsing performance by combining two paths, distributing requests and by
using different transport protocol compositions for the Web transfers. Chapter 6
presents our Multi-Access Prototype we use to evaluate the implementability of
transport option selection as an extension to the BSD Socket API and do a pre-
liminary performance evaluation using an HTTP proxy that uses our Multi-Access
Prototype to path selection on a per HTTP request basis.

Finally, in Chapter 7, we conclude and discuss directions for future research.

4

2
Transport Options

Transport diversity — being able to choose transport options, including different
paths, endpoints, and network protocols — is no advantage per se. Applications can
benefit from performance improvements by choosing the “right” transport options,
e.g., by aggregating the bandwidth of two paths for a large transfer. But also the
opposite is true — choosing a “wrong” set of transport options can considerably
hurt applications’ performance, e.g., by choosing a high-bandwidth, high-latency
link for a latency sensitive transfer.

In this chapter, we explore the overall design space for transport option selection,
assuming that we do not want to change the Internet’s protocols, but enhance the
operating system (OS) on the end host. Therefore, we introduce a terminology to
systemize transport diversity and analyze a set of protocols used in the Internet
leveraging this terminology.

We start by revisiting some background about the Internet protocol stack (Sec-
tion 2.1). Despite their layered design, we show how intertwined and interdependent
protocol stacks are and how the same functionality, such as reliable transmission or
confidentiality protection, is provided on different layers and by different protocols.
Next, we recapitulate the End-to-End Argument (Section 2.2). We explain why, on
the one hand, layering enables protocol stack composition, but, on the other hand,
why focusing on layering only is not sufficient to build good transport configura-
tions.

In the second part of the chapter, we analyze all three dimensions of transport
diversity: multiple paths, multiple endpoints and different network protocols stacks.
We consider each individual path, endpoint and transport configuration as individual
transport option. To analyze transport options, we first introduce the concept of
Communication Units Section 2.3 and compare the communication units to the
Protocol Data Units (PDUs) of protocols used in the Internet and their layering in
Section 2.8. Then, we explore each dimension of transport diversity:

• In Section 2.5, we characterize the different aspects of path selection and an-
alyze protocols that incorporate path selection Section 2.6.

• The aspects of endpoint selection are laid out in Section 2.7.
• To approach protocol stack composition, we first define the problem space in

Section 2.8. We identify the Transport Mechanisms, i.e., the functionality
these protocol stack compositions can provide, in Section 2.9 and show how
this decomposition applies to protocols used in the Internet in Section 2.10.

5

Chapter 2 Transport Options

For each dimension of transport diversity, we look at what transport options are
available and how to select the most suitable transport options with the overall
goal of combining a set of suitable transport options into a transport configuration.
Finally, we take a look at the tradeoffs transport option selection in Section 2.11,
and conclude in Section 2.12.

2.1 The Internet Protocol Stack

IPv4 IPv6

HTTP

UDPTCP SCTP

TLS
QUIC

FTP

IPSec

RTP

WebRTC

MPLS

IEEE 802.3

IEEE 802.11SDH

ATM

LTE

PPP

HDLC

DSL

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer
IEEE 802.1

Figure 2.1: The narrow waist of the Internet.

The “Internet Protocol Stack” is a large family of protocols. Many protocols are
stacked on top of each other: Each layer provides a well-defined transport service to
the layer directly above and uses the transport service of the layer(s) below. The
layering model of the Internet protocols consists of five layers and is often described
by the “Hourglass Model”, see Figure 2.1.

The top of the stack is consists of many application layer protocols, as there are
diverse applications needs. For these protocols, a smaller number of transport layer
protocols provide basic transport services, ranging from unreliable datagram delivery
(UDP) over reliable stream transfer (TCP) to reliable in-order delivery of multiple
message stream (SCTP).

In the middle of the stack, the network layer is providing network-wide unreliable
packet delivery. This layer is also called “narrow waist of the Internet”, as it only
consists of the IP protocol in versions IPv4 and IPv6. These relatively simple pro-
tocols are the “common ground” of the Internet and allow forwarding of packets.

6

2.2 Revisiting the End-to-End Argument

The bottom of the stack is made up by the data link layer and the physical layer.
Protocols at the data link layer, e.g., Ethernet, enable a host or router to reach
the next host or router and, thus, provide the transport service needed by the IP
protocols. Finally, the physical layer is concerned with the physical medium itself
and enables communication on the data link layer. The protocols at the data link
layer and the physical layer are more diverse and specialized to the underlying
infrastructure and properties of the physical medium.

Given a specific communication need of an application, e.g., fetching a Debian pack-
age file from a set of mirror servers, the best protocol stack to be used is not neces-
sarily determined a priori: One could use HTTP or FTP. For HTTP, there is a choice
between TCP, MPTCP, TLS/TCP, TLS/MPTCP or QUIC [17–19]/UDP as trans-
port protocol. For FTP, depending on whether using active or passive mode, there
is either choice between TCP and MPTCP, or between TCP, MPTCP, TLS/TCP,
and TLS/MPTCP. As a network protocol, IPv4 or IPv6 can be used, optionally with
IPSec. We ignore the data link layer and the physical layer and consider them as a
property of the path. Even for this simple example, we end up with 44 feasible com-
binations of protocols that provide the functionality our example application needs.
We call these feasible combinations of protocols protocol stack compositions.

Note that protocols used on the Internet do not strictly match the layers of the
Internet model — therefore, their positioning in Figure 2.1 is a little fuzzy:

• Multiple protocols can reside within the same layer of the Internet model, e.g.,
QUIC and UDP.

• Some protocols span multiple layers of the Internet model or sit somewhere
between the layers anticipated by the Internet model, e.g., TLS.

• The same functionality is implemented by many protocols at different layers,
e.g., confidentiality and integrity protection can be provided by TLS as well
as by IPSec.

• Functionality needed to manage or support one protocol is realized using trans-
port service by the same layer, e.g., management for IPv6 is done by ICMPv6,
which is layered on top of IPv6.

• Protocols may violate the expected layering by using identifiers of other pro-
tocols in weird ways, e.g., DHCP for IPv4 using invalid IP-addresses.

In the next section (2.2), we revisit the “End-to-End Argument in System Design”
and check how it can be used as a guide to choose among protocols.

2.2 Revisiting the End-to-End Argument

One of this most famous publications about placing functionality in a communication
system is the paper “End-to-end Arguments in System Design” by Saltzer, Reed and
Clark [20]. Its core argument is to place functionality as close as possible to the
endpoints.

7

Chapter 2 Transport Options

The function in question can completely and correctly be implemented
only with the knowledge and help of the application standing at the
endpoints of the communication system. Therefore, providing that ques-
tioned function as a feature of the communication system itself is not
possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhance-
ment.) [20, page 278]

This argument has proven useful as a rule of thumb and still serves as a guiding
principle for many people in the IETF [21–23]. Nevertheless, it is made for designing
a clean slate system and does not consider how to integrate an application in an
existing layered system, e.g., the Internet. Despite this different perspective, it
discusses the principle of layering in its conclusion:

It is fashionable these days to talk about layered communication pro-
tocols, but without clearly defined criteria for assigning functions to
layers. Such layerings are desirable to enhance modularity. End-to-end
arguments may be viewed as part of a set of rational principles for or-
ganizing such layered systems. We hope that our discussion will help to
add substance to arguments about the “proper” layering. [Conclusion of
20, page 287]

In today’s Internet, the same functionality is provided at multiple layers. This is
a contradiction to reference models like the ISO/OSI Reference Model [24], that
tried to provide a “proper” layering with a fixed mapping between functionality and
layers. Therefore, today, most people in the networking community agree that there
is no single “proper” layering that fits all communication needs in the Internet. The
Internet protocol stack only anchors the functionality of the network layer, which
all have to agree on to enable end-to-end connectivity. On the other layers, the
Internet’s layering provides modularity which allows to place functionality where it
serves any specific communication need.

Nearly 20 years later “Tussle in cyberspace: defining tomorrow’s Internet” [25] de-
scribes this as a more generalized principle for all “tussels”, i.e., cases where con-
flicting objectives allow no “proper” solution1:

Design for tussle — for variation in outcome — so that the outcome
can be different in different places, and the tussle takes place within the
design, not by distorting or violating it. Do not design so as to dictate
the outcome. Rigid deigns will be broken; designs that permit variation
will flex under pressure and survive.
[…]
Modularize the design along tussle boundaries, so that one tussle does
not spill over and distort unrelated issues. [25, page 466]

In case of the Internet protocol stack, this modularization takes place along two
different kinds of boundaries: At the applications’ communication abstraction
and, at network layer boundaries.
1RFC3724 [23] contains similar arguments.

8

2.3 Communication Units

When using the BSD Socket Interface, applications can choose a communication unit
abstraction that suits their communication pattern, e.g., messages, byte streams, or
message streams. The BSD Socket Interface then translates applications’ commu-
nication units into the Protocol Data Units (PDUs) of a transport protocol. This
transport protocol itself adapts its PDUs to the PDUs of the layer below. This can
result in dissension between semantic communication units, e.g., requests or mes-
sages of an application, and the abstraction provided by the transport service, e.g.,
a byte stream provided by TCP. In the next section, we discuss how to deal with
this dissension when considering transport configurations.

2.3 Communication Units

When considering transport configurations, just comparing the paths, endpoints,
and protocols at each layer is not sufficient. Protocols can operate on different
granularities of communication, i.e., the semantic units that can be distinguished
by the protocol implementation differ. To make things worse, these communication
units often do not match the PDUs used by the protocol, e.g., TCP segments do
not necessarily align with messages at the application layer.

2.3.1 Problem Statement

The main question of this Section is how to systematically approach the optimization
problem of choosing paths, endpoints, and protocols at each layer and combining
them.

Let us consider the following example: If we want to aggregate the bandwidth of
two access networks to load a web page, we might need to choose between two
strategies: Strategy one issues the HTTP requests over different TCP connections
using different access networks. The other strategy uses a single MPTCP connection
and lets MPTCP distribute the traffic. Just comparing the protocols at each layer
is not useful, as the same functionality — bandwidth aggregation — is provided at
different layers. Also, the distribution scheme of strategy one could be layered on
top of MPTCP. Thus, care has to be taken to avoid conflicting optimizations when
mixing both traffic distribution mechanisms.

2.3.2 Communication Units: A Semantic Perspective

To build, rank, and choose among transport configurations, we need to look at
the functionality the individual transport options provide. To achieve the desired
outcome, e.g., aggregating bandwidth or performing reliable transmission using an
unreliable transport service, each of the protocols at each layer can apply suitable
mechanisms to implement the functionality desired. The same mechanisms can be
applied at multiple layers which apply them to different communication units. For

9

Chapter 2 Transport Options

example, reliable transmission can be achieved by retransmission of lost packets.
This can be done at the application layer for full control, which comes at the cost
of complexity in the application logic. Retransmissions can be done at the trans-
port layer for application programmer’s convenience, but, if combined with in-order
delivery, this comes at the cost of causing head-of-line blocking while waiting for
a retransmission to arrive. Finally, retransmissions can be done at the physical or
data link layer. As this cannot guarantee end-to-end reliability, it is no replacement
to retransmissions at the application or transport layer. Nevertheless, applying the
mechanism at the physical or data link layer can be useful to cut retransmission de-
lays or compensate for a high loss rate of a physical media the upper layers cannot
tolerate.

To approach this optimization problem, we need to analyze the mechanism providing
the functionality offered by the transport option and the granularity of communi-
cation units the mechanism operates on. To do so, we not stick to the perspective
of the PDUs used by the protocols, as it is often not well aligned with the messages
layers on top. Instead, we choose the perspective of Communication Units.

Definition 2.1 (Communication Unit)
A Communication Unit is the smallest object that can be distinguished by a protocol
and has a semantic meaning for the application.

That means a message split across serval PDUs of a lower layer protocols is still
considered one communication according to this perspective, as the individual lower
level PDUs have no meaning on their own. So, when going down the protocol stack,
communication units of the application and upper layers may get split in finer chunks
by lower-level protocols (see also Section 2.9.8), but become indistinguishable and.
Therefore, the granularity of communication units observable at the lower layers
become corse. As a result of this, we can exhibit less control about what happens,
e.g., in order to optimize for a specific kind of messages.

As an example, Figure 2.2 shows two logical message streams sent by an application.
The messages are transported using PDUs of a transport protocol, e.g., SCTP in
this example. While logically separated from the applications’ perspective, messages
of different message streams can be packaged into the same PDU of the underling

Association a

Stream A

Stream B

PDU 6PDU 5PDU 1 PDU 2 PDU 3 PDU 4

Message 1

Message 2 Message 3

Message 4

Figure 2.2: Communication Units vs PDUs.

10

2.3 Communication Units

transport. Also, messages may be split across several PDUs. If the messages get
packetized arbitrarily, e.g., PDUs 1-4 in Figure 2.2, the layers providing transport
services to the transport protocol cannot differentiate the individual messages or
streams, e.g., to prioritize them. They can, at most, tell different associations (see
next section) apart. In contrast, when PDUs and messages/streams are aligned,
e.g., PDUs 5 and 6 in Figure 2.2, the PDUs can be tagged and treated differently
by the lower layers.

By approaching transport configurations from a communication unit perspective,
i.e., by following sets of PDUs that have a meaning for the application, we can gain
the following advantages over just looking at layering of PDUs:

• We can abstract from the protocols used in the transport configuration and
look at the functionality provided.

• We can reason about what communication unit a transport option can treat
differently and which, by design, it has to treat the same. This allows us to
reason about tradeoffs, like the ones discussed in Section 2.2, and helps us to
make informed choices a given communication.

• We can distinguish between different mechanisms providing the same func-
tionality, e.g., retransmissions and forward error connection providing reliable
transmission and vet whether they can be optimized for the specific applica-
tion.

• In case the same mechanism is applied multiple times within the same trans-
port configuration, we can identify candidates for conflicting optimizations.

2.3.3 Communication Unit Granularities

To classify the different communication units in the thesis, we define the following
granularities: message, stream, association, or association set. These granu-
larities of communication units pretty much match the usual abstractions used at
the socket layer or group multiple instances of these abstractions. Therefore, we use
this perspective for most reasoning throughout this thesis.

Decisions should always be made on the finest communication unit granularity fea-
sible, that usually means at message granularity and at the client. Afterwards, in
case identical transport services are requested, these communication units can be
aggregated into a corse granularity. For example, a web-based e-mail client that
renders a message may be delay-sensitive for UI/backend communication, but re-
quires a high bandwidth for downloading attachments like photos. Using HTTP
pipelining and forcing them into the same transport configuration will most likely
hurt user experience.

When a communication unit is passed down the protocol stack towards the physical
layer, it is usually treated as an opaque value and, thus, does not have a semantic
meaning. Therefore, at a lower layer protocol, multiple of these messages become
indistinguishable and, based on this, form an equivalence class. This equivalence
class becomes the communication unit from perspective of this protocol.

11

Chapter 2 Transport Options

Note that, in practice, communication units often pass through protocols without
changing granularity, e.g., a stream passing through TLS and TCP is still a stream.
Communication units can also fall in multiple categories. For example, a trivial
stream might just carry one message; an association and association set can carry
a single stream. When a transport service involves middle-boxes, we assume these
either to be transparent or to be endpoints themselves and, thus, function as proxy
for some kind of communication unit — For a discussion how ho reason about
middle-boxes, see Section 2.5.5.

In the reminder of this section, we will define the individual granularities used
throughout this thesis and provide real-world examples for these: For some protocol
examples, we use the communication units the protocol provides transfer services
for, for other examples, we use the communication units of the transport service
used by the protocol.

Message

Definition 2.2 (Message)
A message is a structured piece of data that, on its own, has a meaning for the
application.

This is the smallest kind of communication unit we consider. This does not mean
that this is the smallest datagram used by any protocol, as protocols may apply
the chunking mechanism (see Section 2.9.8), but the smallest communication unit
that has a meaning for the endpoint. Examples of communication units at message
granularity used by well-known protocols include:

HTTP: HTTP-Requests and Responses
HTTP/2: all frames, e.g. DATA, HEADERS, or GO_AWAY frames [26]
XMPP: XML messages
SCTP: a message sent over an SCTP stream

Stream

Definition 2.3 (Stream)
A Stream is an ordered sequence of bytes or messages.

Usually, messages or bytes belonging to the same stream are indistinguishable by the
stream transport and therefore are treated the same by the transport system. Ex-
amples of communication units at stream granularity used by well-known protocols
include:

HTTP/2, XMPP: underlaying TCP connection used
QUIC: QUIC stream
TCP: TCP connection

12

2.4 Analysis: Communication Units and PDUs

Association (Flow)

Definition 2.4 (Association)
An association is set of messages or streams with common endpoints.

In most cases, an association multiplexes streams or messages. As a consequence,
the individual streams or messages within the association become indistinguishable
for protocols in the stack below the protocol doing the multiplexing. Association and
flow describe the same concept, the former from the perspective of the application,
the latter from the perspective of the network. We prefer to use the term association
as the term flow is overused and specified contradictory in many contexts. Examples
of communication units at association granularity used by well-known protocols
include:

HTTP/2: underlaying TCP connection used
SCTP, QUIC: the SCTP or QUIC connection between two endpoints
TCP, UDP: the set of IP packets that carry TCP or UDP segments and share

the same 5-tuple of src-address, dst-address, protocol, src-port,
dest-port

Association Set

Definition 2.5 (Association Set)
An association set is a set of semantically related associations or flows.

That means that the individual associations are distinguishable by the underly-
ing transport, but, as the application needs to process them together, special care
needs to be taken when treated differently. Examples of communication units at
association set granularity used by well-known protocols include:

RTP: session consisting of multiple RTP associations containing pay-
loads and one used for RTCP association for control messages

SIP: SIP session with all related RTP sessions

2.4 Analysis: Communication Units and PDUs

To begin our analysis of selected Internet protocols, we compare the PDU and
communication unit perspective as outlined in Section 2.3. This comparison of
visibility and control guides us then exploring the functionality of the protocols in
Section 2.10 and path selection in Section 2.6.

Table 2.1 shows a selection of protocols and systems used in the Internet. The table
is roughly sorted by the layers of the Internet model as presented in Section 2.1. We
ignore all protocols below the network layer as we consider their functionality as path
property. Protocols listed towards the upper part of the table are often stacked atop
of protocols further below, but not all protocols listed can be stacked on-top of each

13

Chapter 2 Transport Options

other. Table 2.1 list the communication units and PDUs the respective protocols
use at their interfaces to the layers they provide transport service for (upper) and to
the layers they use transport service from (lower). The corresponding comparison
of the functionality provided by the protocols is shown in Section 2.10, Table 2.3.

For the remainder of this section, we revisit how these protocols compose, whether
they can maintain communication units that allow to use application-aware mech-
anisms at lower layers and highlight some trade-offs originating from granularity
issues.

2.4.1 Application Layer

Most application layer protocols such as HTTP and XMPP are designed to be
layered over TCP, the only widely available protocol that supports reliable trans-
port. Therefore, these protocols use a byte stream as PDU towards the lower layers,
as expected by TCP. Despite that HTTP requests and XMPP messages have clear
message boundaries, these messages are indistinguishable for TCP and all layers be-
low and, thus, inaccessible for optimizations at the layers below. This is the result
of designing these protocols into an existing ecosystem instead of designing them as
complete end-to-end systems described in Section 2.2.

Table 2.1: Internet Protocols’ Granularity and Interfaces

Layer Protocol Granularity PDUs
Upper Lower Upper Lower

Application HTTP message stream messages bytes
XMPP message stream messages bytes
SIP message message messages varyingsip

DTLS message message messages messages
TLS stream stream bytes bytes

Transport RTP/SRTP varyingprf message messages⊚ messages
QUIC stream assoc. bytes⊛ PDUs
UDP message message messages IPT PDUs
DCCP message message messages IPT PDUs
TCP stream assoc. bytes IPT PDUs
MPTCP stream assoc. bytes IPT PDUs
SCTP message assoc. messages⊛ IPT PDUs

Network IPsect assoc. assoc. set IPT PDUs IPT PDUs
IP assoc. assoc. set IPT PDUs IP PDUs
NEMO/IFOM assoc. assoc. set IP PDUs IP PDUs

⊛ Multiple parallel streams are supported.
⊚ Messages are extracted from content by content-specific profiles.
IPT IP Transport PDUs — Protocols assume being layered on top of IP.
IP IP Packet — Regular IP packets
sip SIP transport can adapt to stream or message.
prf Determined by content specific profiles - usually message or stream of messages.
t IPsec used in Transport Mode.

14

2.4 Analysis: Communication Units and PDUs

The signaling protocol SIP is internally strictly message based. SIP comes with its
own small transport layer that adapts SIP to the transport services of UDP, TCP,
and SCTP. It maintains the message granularity as long it is run over message based
transports.

Security add-ons such as TLS and DTLS are designed to slide in between applica-
tion and transport. They use the PDUs of the transport’s upper layer interface also
towards the application layer and, thus, can be used as add-ons for new and existing
applications without requiring to changes to the communication units or pattern.

2.4.2 Transport layer

Next, consider the classic and most widely used transport protocols: TCP and UDP.
UDP is a message based multiplexing protocol that allows wrapping application
messages. This usually results in sending one IP PDU per application message.
Thus, it maintains the messages granularity, but forces the application to make sure
its message size does not exceed the MTU of the path or rely on IP fragmentation.
The Datagram Congestion Control Protocol (DCCP) is a drop-in replacement for
UDP that adds congestion control.

TCP provides a byte stream abstraction that resembles a bi-directional Unixpipe.
To maintain the properties of a pipe, it provides a rich set of transport services,
including reliable transmission, in-order delivery and congestion control. MPTCP
extends TCP with multi-path capabilities.

Note that the bundling reliable stream and unreliable message is rather a historic
artifact than a conceptional one. The popularity of TCP and UDP and the lack of
easily available alternatives forced protocols to adapt to either of these two options.
As a consequence, protocols that need transport services like reliable transport mes-
sage transport (e.g., for HTTP requests) either use TCP or implement all required
transport services on top of UDP. This comes with some trade-offs. For example,
multiplexing independent messages into a reliable stream can cause unnecessary
head-of-line blocking: The transport has no way to extract the messages and, in the
presence of packet loss, can only deliver a prefix of the stream data without violat-
ing the in-order property. Thus, it is forcing the application to wait for completely
unrelated messages. See Section 2.10.2 for more discussion.

SCTP is one attempt to provide a much more flexible abstraction: It transports
multiple streams of messages within a single association with all transport services
TCP provides. The different streams prevent head-of-line blocking of independent
messages while providing in-order delivery for dependent messages. SCTP maintains
the messages for the upper layer, but multiplexes and chunks these messages within
a single association and, therefore, does not maintain the message granularity to
the lower layers. It is very versatile, but cannot be used as a drop-in replacement
for other transport services, since it uses a different abstraction and has a relatively
complex programming interface. Moreover, it is blocked by many firewalls and only
available on a few OSes. This limits its deployment.

15

Chapter 2 Transport Options

QUIC is the newest addition to the transport protocol family. QUIC was origi-
nally designed by Google as an application-aware drop-in replacement for TCP that
prevents head-of-line blocking in HTTP. At the moment, it is in heavy flux and in
the process of becoming a generic, state-of-the-art transport protocol. QUIC pro-
vides multiple independent byte streams towards the upper layers, which makes it a
feasible drop-in replacement for TCP while avoiding head-of-line blocking between
different streams. As the creation of streams within an existing association is cheap,
the messages for the upper layer can be maintained by sending each message over a
new stream. The messages granularity is intentionally hidden from the lower layers
by encrypting the whole protocol.

A very special case with regards to communication units takes RTP as it tries to
maintain communication units of the upper layers. RTP uses application specific
profiles which take the applications’ byte streams and chunk them into semantic
messages. These messages can then be policed in application-aware ways, e.g.,
to implement congestion control, and multiplexed in a way that respects timing
constrains. The protocol messages are assumed to be transported via UDP, but no
UDP specific data is included into the RTP PDUs.

Some words about the lower layer PDU interface of the transport protocols discussed
so far: TCP, MPTCP, UDP, DCCP and SCTP include an IP pseudo header in
their checksum calculations and, thus, are required to be run over IP or an IP-like
adaption layer. QUIC does not take parts of the lower layers into account and can
be run on any message based transport.

2.4.3 Network Layer

With regards to network layer protocols, we only consider IP, IPSec in transport
mode and, the Mobile-IP variants NEMO and IFOM. We chose the later three
because these provide interesting examples with regards to their communication
units and functionality. We ignore other VPNs as they, for our purpose, can be
considered additional paths.

If strictly looking at the layering, IP2 can only distinguish hosts and upper layer
protocols. Therefore, application awareness at this granularity is pretty limited.
As the OS on the endpoint still has state to match the IP PDUs to the transport
protocols and their addressing/multiplexing, we still assume a per-association gran-
ularity for any functionality at the network layer despite that strict layering would
only give us corse per-association-set granularity.

A good example how this per-association granularity is used is the transport mode of
IPsec as well as Flow Bindings in Mobile IPv6 and Network Mobility [27] (NEMO).
Internet Protocol Security [28] (IPSec) slides in between IP and other trans-
port protocols to provide integrity and confidentiality protection. The decision
whether to use IPsec is often done on a per-association level by OS level policies.
2IPv4 and IPv6 are identical with regards to their communication unit granularity.

16

2.5 Path Selection

Flow Bindings in Mobile IPv6 and Network Mobility [27] (NEMO) and IP
flow mobility for Proxy Mobile IPv6 [29] (IFOM) are extensions of Mobile-
IP. They can be used to redirect associations to certain paths, which require IP
address rewriting, the addition of routing headers, and application of IPsec. NEMO
assumes this is taking place within the endpoint’s OS, while IP flow mobility for
Proxy Mobile IPv6 [29] (IFOM) assumes this is done within an on-path element,
usually a virtual network interface. While communication unit granularity of the
former is analogous to IPSec, the later has to analyze the headers of upper layer
protocols.

2.5 Path Selection

The availability of multiple paths is the first dimension of transport diversity we look
at. To take advantage of this dimension of transport diversity, we have to identify
the characteristics of the available paths. Then, for each communication unit or
chunk given, we choose the best path or the most suitable set of paths. While path
selection chooses a path, and, therefore, usually also an access network, it does not
change IP routing or requires non-local routing.

In the following sections, we will take a closer look at different aspects of path
selection. First, in Section 2.5.1, we look into the relation between path selection
and scheduling. Then we discuss basic path characteristics (Section 2.5.2) and the
abstraction of Provisioning Domain [30]s (PvDs) (Section 2.5.3). Finally, we discuss
a few special cases including how to model middle-box behavior (Section 2.5.4 and
Section 2.5.5) and path selection mechanisms integrated within cellular networks
(Section 2.5.6).

2.5.1 Path Selection vs. Scheduling

When doing path selection on small communication units or chunks of communi-
cation units, like TCP segments, the term “path selection” is most often replaced
by the term “scheduling”. This shift in perspective is necessary, as the overhead of
doing complex path selection becomes prohibitive for small communication units.
Therefore, for small communication units or chunks, path selection is usually split
into two subproblems:

Definition 2.6 (Candidate Path Selection)
Candidate Path Selection determines feasible paths and chooses a set of preferred
paths that can be used for an larger set of communication units.
Definition 2.7 (Path Scheduling)
Path Scheduling selects one or more paths from the Path Candidates for each
chunk or small communication unit.

For example, in case of MPTCP, candidate path selection decides which subflows to
establish while path scheduling assigns bytes from the send buffer to the subflows.

17

Chapter 2 Transport Options

Thus, while the candidate path selection can afford a more expensive decision process
scheduling has to be cheap, e.g., only based on local state. Examples of scheduling
strategies include:

• Schedule all chunks on a single preferred path, as long as this path is available,
otherwise, use a less-suitable backup path.

• Distribute chunks based on path capacity, whereby capacity can be pre-determined
or information available from other mechanisms, e.g., derived from the con-
gestion window of MPTCP.

A similar effect as using the two-step approach described above can be achieved by
caching path selection results. Indeed, using a cached path selection results can also
be considered a scheduling strategy.

2.5.2 Path Characteristics

The characteristics of paths are manyfold. Some of them are end-to-end properties,
while others are shared by all paths using a local interface or a provisioning domain
(see Section 2.5.3). The most obvious characteristics of a path are its bandwith,
delay and packet loss probability. All three characteristics are, in principle,
end-to-end properties. Determining them for multiple candidates before the actual
communication is often infeasible because of the overhead involved. In most access
networks, where these characteristics matter, we can assume that the bandwidth
bottleneck and the governing delay contributor is the access networks itself [31],
and therefore with a small loss of precision treat these characteristics as properties
of the local interface representing the path.

Also, when looking at cellular networks, monetary cost becomes a relevant prop-
erty. Without destination based billing or zero-rating3, cost is a property of the
Provisioning Domain [30] (PvD) — usually billed as traffic budget, traffic volume
or in the time domain.

Depending on the applications’ needs, a path selection mechanism can be used for
different objectives, including minimizing delay, maximizing or aggregating
bandwidth, maximizing availability, and minimizing cost. Also, to achieve
these objectives, there are multiple ways how to use path selection, e.g., based on the
application’s communication units, on streams of them or, based on chunks within
a protocol.

2.5.3 Provisioning Domains

Different paths can belong to the same PvD. For example, a Laptop computer can be
connected via WiFi and using an Ethernet cable to the same access network. While
the two interfaces to this network are different paths from the OSes perspective,
these paths share most properties and, thus, can be treated as being the same
network for many purposes, e.g., name resolution (see Section 2.7.1).
3 Zero-rating is the practice to exclude certain endpoints from traffic budgets and has become a

major regulatory concern in cellular networks.

18

2.5 Path Selection

Figure 2.3: Multiple L3 Access Networks on a Single L2 Link.

Also, the opposite case is possible. Figure 2.3 shows an example where a home
network is using two access networks each with its own router (Router 1/2)4. In
this scenario, each router announces at least one IPv6 prefix for its access network.
This enables all applications within the home network the choice of access network by
choosing the appropriate IP address as source address. With “just” the appropriate
routing setup, a single interface can provide multiple paths that are in different
provisioning domains.

A comprehensive solution for this problem is provided by the Multiple Provision-
ing Domain Architecture [30] of the concluded IETF MIF working group. To de-
tect which paths are provided by a common provisioning domain, all paths are la-
beled with their provisioning domain. These labels are announced with the address
auto-configuration by protocols like IPv6 Stateless Address Autoconfiguration [32]
(SLAAC) or DHCP as discussed in [33].

2.5.4 On-Path Network Functions

Some paths traverse middle-boxes or proxies that provide network functions on
certain protocols. Examples for such network functions include [34]:

Firewalls limit the possible associations or their parameters.
WAN optimizers change transport protocol options or terminate transport proto-

col sessions and connect them end-to-end to improve performance on links
with, from endpoint perspective, unusual properties, e.g., unexpected high
latency.

Caching-Proxies cache application layer objects and thus allow to save roundtrip
times and backbone bandwidth.

Multipath-Proxies split the chunks of a flow to perform transparent bandwidth
aggregation over multiple paths.

Transcoders change the format or stream rate of media streams.

While network functions can benefit applications’ performance, they also can prevent
certain protocols variants [35, 36]. Therefore, the existence of network functions
can influence the path choice. If a provisioning domain provides optional network
functions, like HTTP or SOCKS proxies, they can provide derivate-paths for some
protocols.
4See “Multi-Homed on a Single Link: Using Multiple IPv6 Access Networks” [3] for a comprehen-

sive discussion of this scenario.

19

Chapter 2 Transport Options

2.5.5 Path Selection through Network Function

Middle-boxes can perform path selection on communication units passing through
them. These network functions are usually found as part of hybrid-access routers,
WAN bonding devices or as virtual interfaces in cellular offloading solutions.
The term cellular offloading [37, 38] refers to moving some traffic from a cellular
network to other access networks, e.g., WiFi hotspots. The use-case of hybrid-
access is exactly the opposite — it refers to bundling cellular and residential broad-
band networks [39], to boost the performance of old residential broadband access
networks, e.g., old DSL infrastructure, by offloading some of the traffic to a high
bandwidth cellular network. WAN-bonding devices bundle multiple commodity res-
idential broadcast access lines to increase bandwidth or availability.

While all these use-cases are more-or-less identical in their functionality at transport-
or network layer, their actual implementations largely differ. WAN bonding devices
and hybrid-access routers are usually deployed as part of a customer premise equip-
ment (CPE) or as middle-box directly connected to multiple CPEs. Offloading
solutions are often realized as virtual interfaces, e.g., as logical interface [40] for
IFOM with Proxy Mobile IPv6 [41], or as configuration agent for the IP stack.

Integrating these middle-boxes into automatic transport option selection is a com-
plex task. If the network function is explicitly requested by the client, e.g., in case
of TCP converters [42], paths through the network functions can be modeled by as-
suming multiple paths matching the network function requested. In case of IP flow
mobility [29] without virtual interface, the configuration provided by a 3GPP access
network discovery and selection function (ANDSF) can be used as part of the local
policy. If the strategy used by these devices or the communication unit granularity
they operate on is not known, the objectives of the path selection performed by the
middle-box may conflict with the objectives at the end host, e.g., a middle-box may
optimize for bandwidth in a case that is latency sensitive. In some cases, using the
functionality provided by the network function can only be avoided by choosing a
different protocol stack composition or path.

2.5.6 Path Selection and Cellular Networks

The lower layers of 3G, 4G, and other wireless networks include support for path
selection or multiple paths of different granularity and complexity:

• GSM and other 2G networks support endpoint mobility.
• 3G networks use soft handovers, where during the transition to a new base-

station, a handset remains connected to the old base-station. A soft handover
mixes path selection and forward error correction in a clever way that can
provide more bandwidth and less packet loss than each of the cells involved
could provide under the given circumstances.

20

2.6 Analysis: Path Selection Opportunities

• For LTE, there exists a transparent multi-path extension called cooperative
multi-point (CoMP). With CoMP, multiple paths from an endpoint using dif-
ferent eNBs to the network core are used to distribute traffic, provide more
bandwidth, and improve network coverage.

As these technologies are designed to be transparent to the endpoint, the endpoint
cannot choose whether to use any of these when using the path. In heterogeneous
access scenarios, solutions below the network layer cannot support transitions be-
tween different access technologies and are not exchangeable with other protocols
that, in theory, provide the same mechanisms. Therefore, we do not consider such
functionality as mechanisms, but as a property of the path.

Nevertheless, cellular networks also support multiple Access Point Names (APNs).
Each APN provides a virtual network attachment including its own addressing,
reachability, traffic policing and on-path network functions. Therefore, from a
transport option selection point of view, these APNs provide different paths in
different provisioning domains that most probably share a common access media.
The ANDSF of the cellular networks provides hints on which of these paths to use
for certain destinations.

2.6 Analysis: Path Selection Opportunities

Now, after introducing the different aspects of path selection, we analyze Internet
protocols that support path selection. Hereby, we focus on the granularity on which
path selection is done

Definition 2.8 (Path Selection Granularity)
We define three types of path selection granularities:

Type 1 All communication units are assigned to the same path.
Type 2 Each communication units can be assigned to one path.
Type 3 Communication units can be split and assigned to multiple paths.

Type 1 path selection can be used to implement mobility and to increase availability,
Type 2 and 3 allow bandwidth aggregation by using multiple paths, but differ in
their distribution granularity.

In addition, we explore whether a protocol enables path selection on the endpoint
or whether it can also be used as part of a network function, e.g., a hybrid access
middle-box, as discussed in Section 2.5.5.

Table 2.2 shows an selection of protocols that support path selection. In the re-
mainder of this section, we go up the stack, from network layer to application layer
and take a closer look at the protocols and the advantages and drawbacks of using
them for path-selection.

21

Chapter 2 Transport Options

Table 2.2: Internet Protocols Performing Path Selection

Layer Protocol Path Selection Granularity Location
Type Comm. Units end-

point
on path

Application HTTP Type 2 message ✓ ✓prx

SIP Type 2 stream ✓ ✓prx

Transport MP-RTP Type 3 messageprf ✓
MPTCP Type 3 stream ✓ ✓
SCTP Type 2 message ✓

Network IP (routing) — no path selection —
IP (policy r.) Type 1 assoc. set
IP (ECMP) Type 2/3 assoc. set ✓ ✓
Mobile IP Type 1 assoc. set
NEMO Type 2 assoc. set ✓
IFOM Type 2 assoc. set ✓ ✓

prx Can be done within a proxy.
prf Depends on content specific profiles.

2.6.1 Network Layer

Realizing path selection at the network layer enables an end host to use multiple
paths without requiring a multi-path aware communication partner. We do not
consider the regular routing in the Internet as path selection, but as a prerequisite
to provide the paths we can choose from.

In contrast to regular routing, we identify policy-routing as Type 1 path selection,
as it directs certain association sets to a specific path. Based on this differentiation,
we also have to consider some Equal Cost Multi-Path Routing [43] (ECMP) routing
strategies as performing path selection: If the ECMP path selection is done in a way
that forwards all PDUs of an association or association set along the same path5,
e.g., based on the 3-tuple or 5-tuple, we consider this as Type 2 granularity. If the
ECMP path selection just uses a round-robin scheme, we consider this as Type 3
granularity. Note that ECMP path selection is not application-aware and therefore
only included as a corner-case.

A particularly interesting case is Mobile IP. Mobile IP allows keeping an IP address
even when leaving the access network and tunnel the traffic to the original access
network. Therefore, it provides an addition path. The Mobile IP extensions NEMO6

and IFOM7 allow multiple paths to the same network and can do path selection
through policy routing. In case of IFOM, where the mobile IP operation is executed
by a virtual interface driver or a middle box, this path selection can even happen
on a middle-box. The 3GPP assumes that rules for policy routing with IFOM are
provided by the ANDSF.
5 This is usually done to prevent packet reordering which can cause major TCP performance

degradation.
6Flow Bindings in Mobile IPv6 and Network Mobility [27]
7IP flow mobility for Proxy Mobile IPv6 [29]

22

2.6 Analysis: Path Selection Opportunities

2.6.2 Transport Layer

Path selection at the transport layer promises low overhead, but requires the collab-
oration of the other endpoint. MPTCP allows adding additional endpoint addresses
to an existing TCP connection. To enable a path candidate, the MPTCP path man-
ager selects an appropriate source and destination addresses, establishes a new TCP
connection over this paths, and links this TCP connection to the MPTCP connec-
tion as a subflow. Each chunk of the MPTCP stream can then be assigned to one
of these subflows; therefore, MPTCP provides Type 3 granularity. Retransmissions
are be tried over the same subflow first, but can be performed using other subflows
if needed. This per-chunk path selection can be tailored to enable diverse strate-
gies, e.g., to do bandwidth aggregation or to allow fast fallback if one path becomes
dysfunctional. As TCP is not protected against on-path modification, middle-boxes
can convert regular TCP streams into MPTCP streams [42].

A proposed multipath extension for RTP [44] works in a similar fashion as MPTCP,
but allows out-of-band address exchange using, e.g., using SDP in SIP. It works on
the message granularity provided by the RTP profiles. Due to the complex interplay
of external signaling and rate control, RTP cannot be converted to multipath RTP
by middle-boxes. But similar functionality can be achieved using application layer
proxies.

SCTP also allows the exchange of additional endpoint addresses. But by default, it
uses only one primary path and uses additional addresses as a fallback. In theory, it
is possible to assign each message or stream to one of the available paths by using an
appropriate source and destination address when sending the object, which results
in Type 3 granularity. To use additional paths, SCTP does not require an additional
handshake, but it is advisable to check path functionality before using it. In practice,
the BSD Socket API and the abstract SCTP API [45] do not expose or enable this
functionality8.

2.6.3 Application Layer

Path selection at the application layer enables path selection at message level. But
this comes at the cost of complexity and often requires additional expensive com-
munication handshakes. We choose HTTP as representative of a message based
application layer protocol that uses stream transport service and SIP as represen-
tative of a signaling protocol that can be used in complex architectures like the IP
Multimedia Subsystem (IMS).

8The abstract SCTP API defined in RFC6458 [45] only allows overriding the destination address
for the packet, but not setting the source address or annotating additional attributes for path
selection. The semitic of the bind() for SCTP sockets is slightly different form the semantic
of TCP/UDP sockets to support fallback addresses, which prevents its use for path selection
as described in Section 2.6.3. This limits path selection for SCTP to solely destination address
and routing based fallback schemes.

23

Chapter 2 Transport Options

The basic operation of HTTP uses a stateless request/replay scheme9. Distributing
the requests/messages is fairly straightforward by issuing the requests over a trans-
port service bound to a certain path. As we can choose a path per request, we end
up with Type 2 flow granularity. The underlying transport services, TCP or QUIC
in case of HTTP, can be bound to a path, e.g., by appropriately choosing source
and destination addresses for the IP PDUs. Adding a new path may induce signifi-
cant overhead with regards to latency due to the handshakes. Usually, HTTP+TLS
handshakes take at least 2-3 round-trip time (RTT)s, a QUIC handshake takes 1-3
RTTs (0 RTT is only possible for existing connections). In addition to the end host,
an HTTP proxy can do the path selection as on-path network function.

SIP is a signaling protocol to negotiate media sessions (typically phone calls and
streaming sessions, e.g., as part of the IP Multimedia Subsystem (IMS) used for
Voice over LTE). It supports the concurrent use of multiple contact IP addresses
for the (concurrent) registration of one endpoint, allowing the creation of multiple
signaling paths to a single endpoint. In addition, this can be combined with the
path selection features of SCTP or MPTCP.

On these signaling paths, signaling messages carry session description protocol
(SDP) messaging to negotiate media streams (i.e., calls or streaming). SDP allows
for the (re-)negotiation of the streams of one media session over multiple paths. In
turn, this can be used to manage application layer path selection as described for
HTTP. From this point of view, SIP can offer application layer multipath support
with a Type 2 granularity. Other signaling protocols as XMPP/Jingle use or resem-
ble SDP and, therefore, can be used in the same way to support application layer
path selection.

2.7 Endpoint Selection

An endpoint, i.e., an application or host, that initiates a communication, has to
know which counterpart to communicate with. Starting with some representation,
e.g., a hostname, and depending on the kind of communication, this information
can be derived from the original representation by many different means:

• The other endpoints can be given by configuration, e.g., a list of recursive name
servers for DNS resolution is usually configured automatically by DHCP or
SLAAC, or are configured manually by an administrator.

• The other endpoints can be derived through name resolution, e.g., by using
DNS to resolve a hostname to an IP address.

• The other endpoints can be cached within the application, e.g., used by many
peer-to-peer networking applications.

In all three cases, more than one derived endpoint my be available, e.g., several ad-
dresses of a multi-homed server or a list of CDN servers hosting the same content.
9In HTTP/2, the header compression algorithm and HTTP push can introduce protocol-level

inter-request dependencies.

24

2.8 Protocol Stack Composition

Endpoint selection is often tied to path selection as endpoints might only be reach-
able over certain paths. For example, recursive DNS servers are often reachable
within a single provisioning domain, e.g., the network of an access provider, to
prevent traffic amplification attacks. Depending on the source the endpoint choice
originates, there are different ways how endpoint selection can be done. Configura-
tion based endpoint selection often comes with a priority or order (primary/backup
server). Cached lists of endpoints can also keep track of historical data like latency
of recent communications, available bandwidth or connection failures. In the next
section, we will take a closer look at the case where endpoint selection is done on
the results of name resolution.

2.7.1 Name Resolution

Name resolution on the Internet relies on both, local decisions at the endpoint as
well as decisions within the DNS infrastructure. This results in spreading the end-
point selection process across different administrative domains, where each domain
independently contributes to the final selection result.

DNS based traffic engineering is used by major CDNs to influence endpoint selec-
tion. The major objectives for this are mapping users to appropriate servers and
load-balancing between severs. It involves elaborate network measurements and
load-based heuristics. Therefore, authoritative DNS servers often return different
responses based on the perceived origin of the request. If an endpoint uses different
paths for name resolution and initiating a communication, the chosen server may be
suboptimal or not reachable at all using the given path. These problems can lead
to a significant performance degradation.

Thus, the DNS configuration strategy outlined in RFC 6106 [46], i.e., having a single
DNS configuration repository that merges all DNS servers received, is insufficient
for automated transport options. Issuing all DNS queries using a single access
network/path will most likely interfere badly with DNS based traffic engineering on
other paths. Therefore we need to do endpoint selection in conjunction with access
network/path selection. This requires maintaining separate resolver configurations
per provisioning domain (see Section 2.5.3) as specified by [30, Section 5.2.1.]. If
this is infeasible, a client can take advantage of the DNS Client Subnet EDNS0
extension [47] to request individual name resolutions per path / local endpoint. In
addition to that, there may be additional requirements that link name resolution and
path selection. E.g., RFC6731 [48] specifies a mechanism to provide special name
server configurations for certain endpoints that should prefer a certain PvD.

2.8 Protocol Stack Composition

Protocol Stack Composition is the last and most complex dimension of transport
diversity we take a closer look at. It refers to the process of choosing a set of protocols
for a given communication unit. In this section, we present a simple algorithm for
building all feasible protocol stack composition to give an intuition for the Transport

25

Chapter 2 Transport Options

Mechanisms for Protocol Stack Composition (see Section 2.9). It also demonstrates
why it is useful to decompose Internet Protocols into Transport mechanisms (see
Section 2.10) in order to derive protocol stack compositions.

Definition 2.9 (Feasible Protocol Stack Composition)
A protocol stack composition is feasible for an application, iff its end-to-end trans-
port service provides all functionality required by the application.

Besides being feasible, an optimal protocol stack composition should match the
preferences of the application as close as possible and minimize overhead. For sake
of simplicity, we ignore all protocols below the network layer and consider all of
their properties as path properties.

The following algorithm builds all feasible protocol stack compositions.

1. Build a directed graph of all available protocols (from application to network
layer). In this graph, there is an edge between two protocols p1 and p2, iff p1
can layer on top of and p2.

2. Build all paths in the graph between the local endpoint, i.e., the application
layer protocol, and one of the IP protocols. These paths represent all stack
compositions. We can, w.l.o.g., ignore cycles as these cycles would represent
tunneling configurations which we do not consider as protocol stack composi-
tions, but as additional paths.

3. For each stack composition, determine the set of functionality it provides.

4. Eliminate stack compositions for which do not provide the required function-
ality. The remaining stack compositions are all feasible.

To build all possible transport configurations, one needs to build all combinations of
feasible protocol stack compositions, the available paths and endpoints. If one of the
protocols within a protocol stack composition is multi-path aware, the respective
transport configurations have to be built with all combinations of endpoints and the
power set of the available paths.

As the process above shows, the list of protocol stack compositions can become quite
extensive. Therefore, to use protocol stack composition within a real system, a policy
component is needed that ranks and filters the transport configurations before trying
them or applying connection racing techniques like Happy Eyeballs [49]. We discuss
how to build such a policy component in Chapter 4. Next, in Section 2.9, we present
how to systematize protocols based on their functionality and analyze our selection
of Internet Protocols in Section 2.10.

26

2.9 Transport Mechanisms for Protocol Stack Composition

2.9 Transport Mechanisms for Protocol Stack
Composition

Transport protocols on the Internet provide a large variety of functionality. While
the functionality of simple protocols like UDP is easy to describe (multiplexing
streams of messages), describing the functionality of complex protocols such as
QUIC, MPTCP or SCTP is hard and can easily fill multiple pages of text. Also, as
we have seen in Section 2.1, the same functionality can be provided at many places
throughout the whole stack.

Definition 2.10 (Transport Mechanism)
A transport mechanism is a functionality a protocol offers as part of its transport
service.

In the following, we explore the mechanisms transport protocols offer, to, later
in Section 2.10, decompose protocols protocols used in the Internet along these
mechanisms. This decomposed representation of the transport options provided by
different protocols can be used to build transport configurations that provide all
functionality required by the endpoints.

2.9.1 Reliability

A reliability mechanism compensates packet loss and packet corruption. The trans-
port service guarantees the endpoint to receive all messages or streams they send,
but it may deliver them in a different order than the endpoint handed them over
to the transport service. There are two basic categories of mechanisms provid-
ing reliability: Retransmission Mechanisms and Forward Error Correction
(FEC).

2.9.1.1 Retransmissions

Retransmission based mechanisms minimize the overhead for reliable transmission
by only retransmitting lost data, but can only do so after detecting the loss. Loss
detection is often based on a combination of acknowledgments and timeouts, and
therefore, messages that are lost and retransmitted are delayed by at least one RTT.
Retransmission based reliability mechanisms perform best in environments with low
packet loss and bit error rates and are the predominant end-to-end mechanism on the
Internet. For example, TCP, SCTP, and QUIC use retransmission based reliability
mechanisms.

Note that reordering sensitivity is no general property of retransmission based reli-
ability mechanisms, but a problem specific to TCP’s retransmission mechanism10.
QUIC is reordering tolerant by using a reordering-timeout and a more flexible ac-
knowledgment mechanism.
10 The reordering sensitivity of TCP is only solved in part by SACK [50]

27

Chapter 2 Transport Options

2.9.1.2 Forward Error Correction

Forward error correction based mechanisms scarify bandwidth for the ability to
recover from bit errors or packet loss. They use additional bandwidth to add re-
dundancy to the PDUs handed to the lower layers. Network coding refers to a
special class of forward error correction schemes. These mechanisms can be tuned
or adapted to different network conditions or be used to exploit multiple paths.

These mechanisms are useful if packet loss or bit error rates are high. They are
predominantly used to counter the effects of lossy physical media, e.g., in DSL. For-
ward error correction based mechanisms are rarely used end-to-end on the Internet,
as the usual end-to-end packet loss and bit error rates in the Internet core are low.
The only deployed end-to-end protocol known to the authors that used FEC was an
old version of Google’s QUIC. It did not perform well compared to retransmission
schemes [51].

2.9.2 Ordering

Protocols that provide an ordering mechanism guarantee some kind of ordering
across messages or streams to be preserved. The exact kind of order is defined
by the transport service definition. An ordering mechanism does not necessarily
preserve total chronologic ordering of all messages, but it can also preserve a partial
order of messages. In case of QUIC, the bytes of individual streams are delivered in
order, but the order of writes across different streams is not preserved or available
on the receiver side.

2.9.3 Integrity Protection

A transport service providing integrity protection guarantees that communication
units arrive at the receiver end without modification. For this thesis, we ignore sim-
ple checksum based mechanisms that can be circumvented by middle-boxes or at-
tacker and only refer to cryptographic mechanisms as integrity protection. Integrity
Protection may interfere with on-path network functions (see Section 2.5.4).

2.9.4 Confidentiality Protection

Confidentiality protection refers to hiding the content of the communication units
form eavesdroppers. With mass surveillance, as documented by Edwards Snowden,
end-to-end confidentiality protection has become a key mechanism on the Inter-
net [52].

Besides the obvious use of privacy protection, confidentiality protection has gained
popularity within protocol to prevent ossification [53] — In ITEF QUIC, this use

28

2.9 Transport Mechanisms for Protocol Stack Composition

is called “greasing”. Applied to almost all parts of the protocol, it prevents middle-
boxes (see Section 2.5.4) to relay on protocol details and causing incompatibilities
that used to be a major obstruction for protocol evolution [54].

2.9.5 Authenticity Protection

Authenticity protection is usually needed to enable integrity protection and confi-
dentiality protection. Both only work iff we can make sure that we are speaking
to the right endpoint. In most use cases, integrity protection and confidential-
ity protection are realized though symmetric cryptography, with keys derived by a
record protocol [55] implementing authenticity protection using asymmetric cryp-
tography.

2.9.6 Congestion Control

Congestion control mechanisms prevent endpoints from overwhelming the network
by sending more data than the available bandwidth permits. Without congestion
control, many links on the Internet would be overwhelmed resulting in routers drop-
ping packets towards the congested link. When the ratio of the dropped packets
gets too high, the network becomes unusable, and we call the state congestion col-
lapse. Packet loss caused by congestion can and must not be countered by reliability
mechanisms, as retransmitting or adding redundancy increases the data rate and
therefore congestion.

TCP style fairness is de-facto standard for congestion control algorithms. Its basic
idea is that packet loss is most likely caused by congestion and thus reduces the
sending rate in case of packet loss to a fraction of the last data rate. Then TCP
tries to slowly increase the data rate linearly to determinate the feasible data rate.
In effect, TCP’s average data rate will oscillate slightly below the feasible data
rate. Multiple TCP shares will converge to a fair share. Other congestion control
mechanisms should try to show a similar behavior and converge to a fair share of
the available bandwidth.

Based on this basic principle, there exist many variants of loss based and delay-
based congestion control algorithms and commodity TCP implementations usually
implement more than one algorithm. Therefore, congestion control can also be
subject to transport option selection.

In addition to loss based congestion control, Explicit Congestion Notification [56]
(ECN) allows notifying the receiver of an IP packet that a link on the path is fully
loaded and packet drops due to congestion are expected unless the data rate is
decreased. The receiver is then obligated to communicate this back to the sender
on a higher protocol layer, e.g., in TCP, so that the sender can lower the data
rate accordingly. Used together with Active Queue Management [57] (AQM), ECN
based congestion control algorithms can gain significant performance benefits [58].
Therefore, if a path provides end-to-end AQM based ECN, transport option selection
should select an ECN aware congestion control mechanism.

29

Chapter 2 Transport Options

2.9.7 Multiplexing

Multiplexing refers to merging fine-grained communication units into a stream or
association of a corse grain communication unit. A protocol that provides a multi-
plexing mechanism uses different communication units at its upper and lower layer
boundaries, e.g., in case of SCPT, it multiplexes multiple message streams from the
application layer into one association at the IP layer. Our definition of multiplexing
does not require joining multiple PDUs from the upper PDUs into a single PDU of
the lower layer boundary, it is sufficient, that the lower layer cannot distinguish the
communication units of the upper layer without violating layering. Therefore, port
based addressing in UDP is also considered multiplexing.

2.9.8 Chunking

When a communication unit is handed over to another layer, it might be necessary
to split an object, a stream or a set of associations into one or more parts. Typi-
cally, chunking splits only large objects or streams into multiple ones while keeping
smaller entities untouched. Associations or Flows are typically not split, but sets of
Associations or Flows might be partitioned. Once split into chunks, each chunk can
be transferred individually over different transfer options.

Chunking can occur at different layers within a system:

• A Web site consists of multiple objects or files. Therefore, the files can be seen
as the natural chunks of a Web site.

• RTP profiles organize how to transfer, e.g., video, over RTP, and split a data
stream at semantic boundaries.

• TCP takes as input a byte stream and chunks it into segments. TCP chunking
(segmentation) occurs at arbitrary byte ranges; thus, it will most likely not
align with boundaries of objects that are multiplexed within an application
layer Association on top of a TCP connection.

• IP fragmentation splits an IP PDU into smaller PDUs; all but the first chunk
does not even have a header to dispatch them to an endpoint.

As chunks often have no meaning on their own, the communication unit granularity
does not change. For example, a protocol that applies chunking to a message-stream
cannot distinguish between messages within the stream. The protocol can trans-
parently chunk messages, but needs to reassemble the stream before handling the
message-stream back to the application. This introduces complex trade-offs when
combined with other mechanisms, e.g., by increasing loss probability or introducing
head-of-line blocking.

In practice, chunking is often constrained to maintain certain properties that are
desirable for the overall system. Examples of such restrictions include:

• Segmentation in TCP restricts the chunk size, i.e., TCP segment size, to the
IP MTU or IP Path MTU to avoid fragmentation at the IP layer.

• Equal cost multipath routing does not distribute packets, but flows to avoid
reordering that would hurt, e.g., TCP.

30

2.9 Transport Mechanisms for Protocol Stack Composition

Figure 2.4: Example of different kinds of chunking in the Internet that a TCP flow
may experience.

Figure 2.4 shows an example of how data from an application can be chunked while
it traverses the network. Typically, the layers below the application layer have
to adjust to the MTU of the layer below and split PDUs, e.g., to enable striping
or forward error correction11. Hereby, each layer has a tradeoff between overhead
per chunk, increased delays, increased chunk reordering, overhead for reliability.
Moreover, memory constraints for buffer management have to be considered.

When building a transport configuration, the chunking chosen at each layer bound-
ary is a tradeoff between complexity, knowledge, and performance. On the one hand,
smarter choices at the application layer or transport layer can reduce the load on
the network layer, but using too small or oddly sized chunks can hurt performance.
On the other hand, choosing a slightly too big chunk size triggers chunking at the
next layer and often results in doubling the numbers of packets, one at real MTU
size, the other only carting a few bytes. This leads to a higher loss probability for
the double-chunked packets, increases the load on routers and wastes capacity on
certain media that require a minimum packet size. A good example for this trade-off
is IP fragmentation, as discussed in Section 2.10.4. Given these tradeoffs, transport
option selection should minimize re-chunking if possible. However, in the Inter-
net re-chunking is frequently done, as highlighted in Figure 2.4, even though most
protocols already try to incorporate the chunk size of the lower layers if feasible.

11 Nowadays, middle boxes might also effect the chunking of packets either intentionally or as a
result of their purpose, e.g., by changing the application layer data stream.

31

Chapter 2 Transport Options

2.9.9 Path Selection

While we discuss path diversity as a dimension of transport diversity in Section 2.5,
in this section, we look at the mechanism for selecting which of the available paths
to use for each communication units. As stated earlier, this selection can be done in
different parts of the protocol stack and, thus, for different kinds of communication
units or chunks of them:

• Path Selection can be done within an application on a per message or stream
granularity. Choosing one of the local network interfaces can be achieved by
setting the source IP address for the communication to the IP address of the
interface.

• Path Selection can be done within the transport layer on a per message,
stream, or association granularity. For example, MPTCP allows splitting a
stream over multiple paths. Each chunk of the stream, each TCP segment, is
assigned to one or more subflows for transmission. The subflows are visible to
the lower layers as streams or associations.

• Path Selection can also be made on a per-association granularity within a
middle-box or network function like a MPTCP-Proxy or a BANANA-box.
Path selection is usually realized by choosing the outer source and destination
of a tunnel.

• In case of an ECMP router, path selection is made at the network layer on a
per association or association set basis.

There is no single optimal place within a protocol stack to perform path selection.
As always, the protocol should operate at a granularity, which allows distinguishing
between communication units that require different objectives.

Using path selection on chunks of corse communication units can enable better
distribution than using path selection on the original communication units, e.g., by
splitting messages into smaller chunks, but can also cause head-of-line blocking or
increase the message loss probability. This again is a trade-off that depends on the
applications needs.

For communication units that can be treated the same, functionalities like band-
width aggregation can be realized at different protocol levels. Indeed, in Chapter 5,
we show using path selection to distribute downloads of multiple objects over mul-
tiple paths achieves the same performance, as using a single stream to download
these objects while using path selection on the chunks of that single stream.

2.9.10 Mobility

Mobility refers to migrating a stream or association to another path. Therefore,
mobility can often be considered as a use-case of path selection as most protocols
that do path selection also provide mobility. Note that mobility support of physical
layer and data link layer protocols, such as WiFi and 2G networks, that provide
simple switch-overs between base stations, are considered features of the path and

32

2.10 Analysis: Transport Mechanisms

therefore not subject to transport option selection. Still, there are also protocols
like Mobile IP [59, 60] (without IFOM extension) that only allow migration of all
communication units they provide transport services for.

2.10 Analysis: Transport Mechanisms

Next, we take a look at Internet protocols and systems from a functionality per-
spective. Therefore, we decompose these protocols into transport mechanisms, see
Section 2.9. Hereby, we explain the tradeoffs incurred by using the respective proto-
cols to gain the desired functionality. By looking at the PUDs, we can see whether
two protocols can (in principle) stack on top of each other. By looking at the com-
munication units, we see at which granularity mechanisms of a protocol can operate
and, therefore, see whether they can be used in an application-aware manner.

Table 2.3: Internet Protocols’ Transport Services

Pro
to

co
l

Con
ge

sti
on

Con
tro

l

Ord
er

ing

Reli
ab

ilit
y

In
te

gr
ity

Pro
te

cti
on

Con
fiden

tia
lit

y
Pro

te
cti

on

Auth
en

tic
ity

Pro
te

cti
on

Chunking

M
ulti

plex
ing

HTTP ⊛ ⊛ ⊛ bytes requests
HTTPS ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ bytes requests
XMPP ⊛ ⊛ ⊛ (⊛) (⊛) (⊛) messages
SIP ✓ (⊛) (⊛) (⊛) messages

DTLS ✓ ✓ ✓ services,name
TLS ⊛ ⊛ ✓ ✓ ✓ services,name

RTP ✓prf ✓prf messagesprf messages
SRTP ✓prf ✓prf ✓ ✓ ⊛sig messagesprf messages
QUIC ✓ ✓ ✓ ✓ ✓ ✓tls bytes connection-id,+tls

UDP ports
DCCP ✓ ports
TCP ✓ ✓ ✓ bytes ports
MPTCP ✓ ✓ ✓ bytes ports
SCTP ✓ ✓ ✓ bytes ports,streams

IPsec (ESP) ✓ ✓ ⊛ike spi,next-header
IPsec (AH) ✓ ⊛ike spi,next-header
IP (✓fr) (fragments) address,next-header
NEMO/IFOM ⊛ assoc.
⊛ Protocol requires transport service.
✓ Protocol provides transport service.
prf Realized by content specific profiles.
tls Uses TLSv1.3 as sub-protocol; imports authenticity protection and multiplexing from TLS.
ike Realized externally by external protocol IKE/IKEv2.
sig Realized externally by external signaling protocol (e.g., SIP, XMPP, WebRTC).
fr Only when fragmentation is used and only to re-assemble IP PUDs

33

Chapter 2 Transport Options

Table 2.3 shows the same selection of protocols and systems as Table 2.1. The
table is again roughly sorted by the layers of the Internet model as presented in
Section 2.1. We ignore all protocols below the network layer as we consider their
functionality as property of the path. Table 2.3 lists which of mechanisms introduced
in Section 2.9 these protocols implement as part of their transport service and
which transport services of lower layers they require. For the mechanisms Chunking
and Multiplexing, Table 2.3 also lists for each protocol on which abstractions these
mechanisms operate. This time, we have separate entries for some protocol variants,
e.g., HTTP/HTTPS, as they require or provide different transport services.

For the remainder of this section, we will revisit the individual mechanisms. This
time, we structure the analysis along the mechanisms, rather than along the layering.
This allows us to better compare the abstraction these mechanisms work on and the
side-effects arising.

2.10.1 Congestion Control

All application protocols that can consume a significant amount of bandwidth either
require congestion control as a transport service or implement it. Low-bandwidth
protocols such as DNS or SIP often ignore congestion control. Traditionally, origi-
nating from TCP, congestion control is provided by transport layer protocols. With
the exception of UDP, all transport layer protocols listed in Table 2.3 provide con-
gestion control in some way.

Congestion control has to work regardless of what data the application is about
to send. Therefore, in presence of congestion, application awareness may only de-
termine what to drop first. It should not exceed a, from congestion avoidance
standpoint, admittable data rate. Protocols that support multiple streams, such
as SCTP and QUIC, solve this by allowing to prioritize individual streams. RT-
P/RSTP uses a clever layer violation: It performs congestion control in an applica-
tion data specific way. If RTCP reports packet loss, the RTP profile can selectively
drop messages from the application’s data streams to reduce the bandwidth and
guarantee in-time delivery of the remaining data.

2.10.2 Ordering and Reliability

Due to the heritage of TCP, ordering and reliability are implemented at the trans-
port layer in most cases. As already explained in Section 2.4.2, applying ordering
and reliability to an oblivious stream of application messages can cause head-of-line
blocking. While this is desirable for dependent messages, i.e., messages that have
to be processed in order, it is undesirable for independent messages. To avoid this
issue, independent messages should not be multiplexed into the same communica-
tion unit of a protocol that implements ordering and reliability. SCTP and QUIC
provide multiple streams to separate independent messages into individual streams.

34

2.10 Analysis: Transport Mechanisms

RTP does not suffer from head-of-line blocking as it only implements (re)ordering
and hands off the data to the applications based on deadlines.

Signaling/address resolution protocols such as SIP or DNS do not need ordering,
but reliability, which is usually done by re-transmitting the original messages after
a short timeout. As these messages are idempotent, duplicate messages can be
tolerated.

IP needs to re-order fragments to re-assemble them but does not expose this mech-
anism as transport service. See more discussion about IP fragmentation issues in
Section 2.10.4.

The data-link layer of some paths might also implement ordering or reliability. Re-
liability on the data link layer is useful as a performance enhancement for media
with a relatively high packet loss or bit error rate. Ordering protection at this layer
is sometimes applied to prevent performance degradation when providing transport
services to TCP, as TCP misjudges packet reordering for packet loss. QUIC and
SCTP are resilient against minor reordering.

2.10.3 Integrity, Confidentiality, and Authenticity Protection

In the beginning of the Internet, all routers and endpoints were considered trusted.
Therefore, there was no need for confidentiality and integrity protection and this
functionality was added to the Internet protocol suite later using extensions.

The most prominent of these extensions is SSL and its successor TLS. TLS realizes
all three mechanisms: integrity, confidentiality, and authenticity protection within
a separate layer that slides between application and transport layer. Besides the
stream based TLS, there is a message based variant DTLS that does not require
ordering and reliability as transport service. The main argument for TLS and DTLS
are easy deployment, as they are usually realized as a library and do not require
OS support. They also give applications full access to the information of the au-
thentication protection and, thus, allows tight integration with application-specific
security protocols.

The second prominent security add-on protocol family is IPSec, which slides be-
tween the transport protocol and IP12. IPSec comes in two variants, Authentication
Header (AH), which only provides integrity protection, and Encapsulating Secu-
rity Payload (ESP), which provides both, integrity and confidentiality protection.
IPsec offloads the authenticity protection into a separate protocol — Internet Key
Exchange (IKE). IKE performs a handshake and verifies the authenticity of the end-
point(s), e.g., using cryptographic certificates, shared keys or an external directory
and, then, negotiates cryptographic keys to be used for confidentiality and integrity
protection of the session. Separating the authenticity protection protocol makes the
implementation of integrity and confidentiality protection much simpler. Indeed,
12We only look at IPsec in transport mode — We model IPsec in tunnel mode as an additional

path.

35

Chapter 2 Transport Options

also TLS separates the authenticity protection protocol internally. In case of IPsec,
confidentiality and integrity protection is usually implemented in kernel space and
can benefit from hardware acceleration.

Other transport protocols that integrate integrity and confidentiality protection are
QUIC and SRTP. QUIC uses the TLS authenticity protection protocol for au-
thenticity protection. SRTP relies on a signaling protocol like SIP for key exchange.
See [55] for an extensive discussion of integrity, confidentiality, and authenticity
protection as transport service.

IPsec can secure any transport protocol and allows multiple communications be-
tween two endpoints to share a single cryptographic secession. Still, if a separate
treatment by on-path elements is required for some communication units, these can
be made distinguishable by choosing separate SPIs and using different flow labels
in IPv6.

In today’s OSes, there is no infrastructure that allows applications to access authen-
ticity information from IPsec, making it infeasible for most use cases.

2.10.4 Chunking

Many transport services limit the maximum size of a PDU that can be transferred
(MTU). To transfer larger communication units, chunking, as described in Sec-
tion 2.9.8, has to be applied to adapt the message size to the MTU of the transports.
Therefore, protocols can provide transport services that allow using arbitrary com-
munication units. As this is extremely useful, almost all transport protocols, except
UDP, support chunking for this purpose. To choose a sensible chunk size, many pro-
tocols perform path MTU discovery and adjust the chunk size according to its result.
Aligning the messages of upper layer protocols with chunk boundaries can further
improve performance: RTP chunks media streams at their message boundaries to
perform congestion control and rate adaptation in an application-aware manner.

Historically, IP supports chunking of IP datagrams; this process is called IP frag-
mentation. As many transport protocols already support chunking, these protocols
try to avoid IP fragmentation to avoid double-chunking problems described in Sec-
tion 2.9.8. They only rely on IP fragmentation in cases where path MTU discovery
fails, e.g., because of firewalls that block the ICMP “Fragmentation Needed” er-
rors. For IPv6, the IETF dropped IP fragmentation form the basic IPv6 transport
services and moved its functionality into an optional extension.

Finally, the general concept of splitting a communication unit into smaller pieces
can also be applied in other contexts. HTTP allows limiting requests to byte-
ranges of the requested objects. Applications can use this technique in many ways,
e.g., to continue the download of a file, to download multiple chunks if a file from
multiple endpoints or download them over multiple paths. The Mobile-IP variants
NEMO and IFOM can chunk the association set, represented by source address
and destination address in smaller association sets (based on IP five-tuples, three-
tuples or six-tuples) to route tier PDUs over different paths.

36

2.11 Cost and Granularity Tradeoffs

2.10.5 Multiplexing

We define multiplexing in Section 2.9.7 as merging fine-grained communication units
into a stream or association of a corse communication unit. Despite looking like a
corner case, the most prevalent use case for multiplexing in the Internet protocols is
addressing. IP uses the next-header to multiplex IP PDUs to the same IP address
towards different transport protocols. Most transport protocols use port numbers
to multiplex messages using the same transport protocol to the different endpoints
(processes) using the same transport protocol. Some protocols do not use port
numbers; instead, they multiplex on a session basis, e.g., IPsec based on the Security
Parameter Index (SPI) and QUIC on base of the Connection ID. TLS and
DTLS, and therefore also QUIC, allow further addressing based on optional “server
name” and “service” 13.

The second use case of multiplexing is merging multiple messages or streams into
one association, as done by SCTP, RTP, and QUIC. This allows separating inde-
pendent streams of communication, e.g., to prevent head-of-line blocking, without
requiring relatively expensive association setup and allows shared state keeping for
the whole association.

2.11 Cost and Granularity Tradeoffs

Cost and complexity of transport option selection depends on the number of trans-
port options, the network state used and, other actions that need to be performed
either to determine the transport options available, determine their properties or to
compose them into transport configurations. If the information about a transport
option is easily available and only use local state, e.g., link availability, the cost may
be negligible. An example of such a transport option is using Equal Cost Multi-
path (ECMP). In other cases, the cost can be non-trivial, e.g., when determining
transport options involves queries to remote entities or determining the properties
transport options requires active network performance measurements. Examples
for these include determining endpoints using DNS or DHT lookups, as used by
some file sharing protocols. Such expansive mechanisms should be used rather in-
frequently because costs may become prohibitive if used too often. Thus, to perform
transport option selection for fine grained communication units, it is advisable to
cache results of transport option selection or to use a two-phase-process. The latter
determines transport option candidates and determines their properties in the first
phase, and selects between these candidates in the phase.

13Primary use-case is Server Name Indication (SNI) introduced to allow to run multiple HTTPS
servers on the same IP address and TCP port.

37

Chapter 2 Transport Options

2.12 Conclusion

In this chapter, we revisit the design of the Internet protocol stack from different
perspectives to understand and systematize the transport options it provides. By
focusing on communication units that have a semantic for the application, we ana-
lyze on which communication granularity optimizations can be applied. By looking
at the PDUs, we derive which protocols, in principle, can be layered on to of each
other. Using this perspective, we analyze the three dimensions of transport diver-
sity: path selection, endpoint selection, and protocol stack composition. To approach
the latter, we identify a set of building blocks that can be used to compose transport
services provided by Internet protocols — our transport mechanisms.

The results of this analysis is the basis to tackle transport option selection in the
remainder of this thesis. We find a diverse set of protocols that provide transport
options at almost all granularities. We also often see that different compositions
can provide the same transport service functionality.

What our analysis does not cover is the history of the protocols, their implemen-
tations, and the implementations of the paths. In fact, these factors dramatically
limit the usability of protocols and constrain the layering of protocols. In prac-
tice, the latter results in designing protocols into the most easily usable ecosystem
instead of using the best technical solution which may be standardized, but not
easily available. Because of this, most applications on today’s Internet are layering
HTTP over TCP, even in use-cases where alternatives like SCTP would address the
applications’ needs much better. From a communication unit perspective, this also
means forcing message granularity communication into a stream abstraction and,
thus, preventing further optimizations.

In the next chapters, we explore building blocks for OS based transport option
selection which does not require any change in the protocols used in the internet,
but only changes at the client side OS. We show how to enable applications to
seamlessly take advantage of the protocol diversity in the Internet and prepare for
transport evolution.

38

3
Socket Intents: Expressing

Applications’ Intents

In Chapter 2, we look at what transport option selection can choose from in order
to optimize application performance, by analyzing the design space for client based
transport option selection. In this chapter, we approach the problem what transport
option selection should optimize for. Therefore, we introduce the concept of Socket
Intents.

Socket Intents allow applications to share their knowledge about their
communication pattern and express performance preferences in a generic
and portable way.

We first published the concept of Socket Intents alongside with an early version of
the system presented in Chapter 6 at CoNEXT’2013 [1]. In this chapter, we describe
the general concept of Socket Intents in the version we tried to standardize in the
IETF [6] and may become part of a joint effort to build a new transport API [11].

This chapter starts with explaining the motivation behind Socket Intents in Sec-
tion 3.1, defining a problem statement in Section 3.2 and describing the resulting
concept and what kind of information Socket Intents should provide in Section 3.3.
In the remainder of this chapter, we define an extensive, but not exhaustive, set of
Socket Intents types applications may provide in Section 3.4, discuss related work
in Section 3.6 and the implications of a wide deployment of Socket Intents in Sec-
tion 3.7. Finally, we conclude this chapter in Section 3.8.

3.1 Motivation

To illustrate the need for Socket Intents, we get back to the examples from the
introduction (Chapter 1): Examples of common applications that have different
communication needs:

• For video streaming applications, such as Youtube, bandwidth is most crucial.
• For voice calls packet loss and latency are important.
• Push notifications channels should be resilient and energy efficient.
• Software updates should afflict the lowest cost possible.

Yet, using today’s socket API, all of these applications look the same to the OS.

39

Chapter 3 Socket Intents: Expressing Applications’ Intents

There is no way for the OS to support exploiting transport diversity in a way
that provides each of these applications the transport configuration that suits their
needs.

Moreover, there are also examples beyond the design space for transport option
selection we explored in Chapter 2 that benefit form information about ongoing
communication:

• The TCP Nagle Algorithm avoids sending small TCP segments by coalescing
them into larger ones. While it improves the throughput of many applications,
it has a negative impact on the user experience of interactive shell session.

• Knowing the data rates of the videos streamed enabled Youtube to de-peak
their traffic and, therefore, prevents packet loss without changing the data
rate [61].

For most applications, exploiting transport diversity and tuning transport protocols
by using their own heuristics is infeasible: As outlined in Chapter 2 the design-
space for transport option selection is huge. Obtaining the necessary information
is difficult since special privileges are required on most platforms to access this
information. In addition to that, choosing a path or tuning advanced protocol
parameters usually requires using non-portable APIs or APIs that are unavailable in
most programming languages. Consequently, the available access network diversity
is usually not exploited.

Therefore, we need a way to communicate the applications’ intents to an entity,
that is able to deal with the complexity of transport option selection and where all
communication and transport options are visible: the OS. Having information about
the applications’ needs at OS level — on the finest communication unit granularity
possible — is the key enabler to automatically exploit the diversity as part of the
OS’s transport service. It allows matching communications to the most suitable
interfaces and jointly optimizing traffic across applications.

3.2 Problem Statement

Application programmers opening a communication channel typically know how this
channel will be used. In addition to the protocol and destination address needed
to establish a communication channel, there typically is more information available:
An application developer knows or has an intuition of many aspects of an upcoming
communication, which may include:

preferences whether to optimize for bandwidth, latency, or cost
characteristics expected packet rates, byte rates or how many bytes will be sent

or received.
expectations towards path availability or packet loss
resiliences whether the application can gracefully handle certain error cases

40

3.3 Socket Intents Concept

These preferences, expectations, and other information known about the upcoming
communication should be expressible in an intuitive, generic way, that is indepen-
dent of the network- and transport protocol. Its representation should be indepen-
dent of the actual API used for network communication and should be expressible
in whatever API available, e.g., as Socket Options for BSD sockets, as transport
properties for the TAPS API [11].

Socket Intents should enable the OS to adjust the communication channel according
to the application’s intents in a best-effort fashion. They should provide the infor-
mation needed for automated transport option selection. The actual implementation
is not part of the Socket Intents concept. It is realized as an OS policy, that takes
care of choosing the transport options the application can benefit most, e.g., the
most suitable protocol stack composition, endpoint and combination of paths.

3.3 Socket Intents Concept

Socket Intents are pieces of information that allow an application to express what
it knows about its communication. They indicate what the application wants to
achieve, knows, or assumes general, intuitive terms. As shown in Figure 3.1, an
application can use them to annotate the characteristics, preferences, and intentions
it associates with towards the OS via the Socket API. Since this information captures
the intents of an application and passes them along with the communication socket,
we call these pieces of information Socket Intents.

Socket API

Kernel
LTE

Traffic category
Bytes to send
Bytes to receive
Duration
Resilience
...

Figure 3.1: Socket Intents passed to OS via the Socket API.

Socket Intents are optional information and are considered in a best-effort man-
ner. This strictly discerns them from all kinds of requirements, such as manda-
tory transport functionality as reliable in-order delivery, or bandwidth, delay and
jitter requirements expressed through Quality of Service (QoS) style reservations.
Therefore, the difference between QoS and our Socket Intents approach, can also
be summarized as, “[…] the application tells what it knows as opposed to what it
wants, as in prior work on QoS” (CoNEXT’2013 TPC member).

41

Chapter 3 Socket Intents: Expressing Applications’ Intents

Examples for types of information include number of bytes to send/receive, the
bitrate and duration of a stream, or the preference whether to avoid traffic or time
accounted paths. The latter example suggests that specifying Socket Intents may
result in connection failure, but other than that, they should not require changes in
the application logic.

Applications have an incentive to specify their intents as accurately as possible
to take advantage of the most suitable existing resources. We expect applications
to selfishly specify their preferences, but since the OS knows about the intents
of multiple applications and about the available network resources, it can balance
the different requirements. It is up to the OS’s policy to prevent commitment of
excessive resources suggested by intents, e.g., by checking the accuracy of the intents
specified after each communication unit and penalize misbehaving applications.

3.4 Socket Intent Types

Socket Intents are structured as key-value-pairs. The key is a simple string repre-
senting the type of a Socket Intent. Values can be represented as enum, int, float,
string or, a sequence of the aforementioned data types. Implementations determine
how these types are represented on the respective platform. Table 3.1 gives an
overview of Socket Intent types we specify in our IETF draft [6] and the commu-
nication units, as defined in Section 2.3.3, they apply to. In the remainder of this
section, we briefly describe these Socket Intent types. The levels of the enum Socket
Intent types are concluded in Table 3.2.

Traffic Category The Traffic Category describes the dominating traffic pattern
of the respective communication unit expected by the application. Most categories
suggest the use of other intents to further describe the traffic pattern anticipated,
e.g., the bulk category suggesting the use of the Size to be Sent intent or the stream
category suggesting the Stream Bitrate and Duration intents.

Cost Preferences This describes the Intents of an Application towards costs cased
by the respective communication unit. It should guide the OS how to handle cost
vs. performance and reliability tradeoffs.

Size to be Sent / Received This Intent is used to communicate the expected size
of a transfer.

Duration This Intent is used to communicate the expected lifetime of the respec-
tive communication unit.

Stream Bitrate Sent / Received This Intent is used to communicate the bitrate
of the respective communication unit.

42

3.4 Socket Intent Types

Table 3.1: Socket Intents Types

Intent Type Data Type Applicable Granularity
Message Stream Assoc Assoc.Set

Traffic Category Enum ✓ ✓ ✓
Cost Preferences Enum ✓ ✓ ✓ ✓
Size to be Sent Int (bytes) ✓ ✓ ✓ ✓
Size to be Received Int (bytes) ✓ ✓ ✓ ✓
Duration Int (msec) ✓ ✓ ✓
Bitrate Sent Int (bytes/sec) ✓ ✓ ✓
Bitrate Received Int (bytes/sec) ✓ ✓ ✓
Disruption Resilience Enum ✓ ✓ ✓ ✓
Timeliness Enum ✓ ✓ ✓ ✓
Burstiness Enum ✓ ✓ ✓

Table 3.2: Socket Intents Types – Enum Values
Intent Type Enum Values Description

Traffic Category query Single request / response style workload, latency bound
control Long lasting, low bandwidth, not bandwidth bound
stream Stream of bytes/messages with steady data rate
bulk Bulk transfer, huge messages, bandwidth bound
mixed* Don’t know or none of the above

Cost Preferences no expense Avoid expensive transports, consider failing otherwise
optimize cost Prefer inexpensive transports, accept service degrada-

tion to save cost
balance cost* Do not bias policy default when balancing cost
ignore cost Ignore cost, choose transport solely based on other cri-

teria

Disruption Resilience sensitive* Disruptions result in application failure, disrupting user
experience

recoverable Disruptions are inconvenient for the application, but
can be recovered from

resilient Disruptions have minimal impact for the application

Timeliness stream Minimize delay and packet delay variation
interactive Minimize delay, some variation is tolerable
transfer* Delay and packet delay variation should be reasonable,

but are not critica
background Delay and packet delay variation is no concern

Burstiness no bursts Application sends traffic at a constant rate
regular bursts Application sends bursts of traffic periodically
random bursts Application sends bursts of traffic irregularly
bulk Application sends a bulk of traffic
mixed* Don’t know or none of the above

* default value

43

Chapter 3 Socket Intents: Expressing Applications’ Intents

Disruption Resilience This Intent describes how an application deals with dis-
ruption of its communication, e.g., connection loss. It communicates how well the
application can recover from such disturbance and can have implications on how
many resources the OS should allocate to failover techniques for this particular
communication unit.

Timeliness This Intent describes the desired delay characteristics for this com-
munication unit. It provides hints for the OS whether to optimize for low delay or
for other criteria. There are no hard requirements or implied guarantees on whether
these requirements can actually be satisfied.

Burstiness This Intent describes the anticipated burst characteristics of the traffic
for this communication unit. It expresses how the traffic sent by the application is
expected to vary over time, and, consequently, how long sequences of consecutively
sent packets will be. Note that the actual burst characteristics of the traffic at
the receiver side will depend on the network. This Intent can provide hints to the
application on what the resource usage pattern for this communication unit will look
like, which can be useful for balancing the requirements of different application.

3.5 Usage Examples

Based on the Socket Intents types we defined in Section 3.4, we describe three use
cases in which different Socket Intents can benefit applications in different ways.

3.5.1 OS Upgrade

Consider a cellphone performing an OS upgrade. This process usually implies down-
loading a large file. This is a bulk transfer for which the application may already
know the file size. Timing is typically noncritical and the data can be downloaded
as background traffic with minimal cost and power overhead. It does not hurt if the
TCP connection is closed during the transfer as the download can be continued.

For this case, the application should set the Traffic Category to bulk, Timeliness to
background, and Application Resilience to resilient. In addition, Size to be Received
can be provided. Finally, the application may set the the Cost Preferences to no
expense.

The OS can use this information and therefore may schedule this transfer on a flaky
but not traffic-accounted WiFi link and may reject the connection attempt if no
cheap access link is available.

44

3.5 Usage Examples

3.5.2 HTTP Streaming

Consider a user watching non-live video content using MPEG-DASH [62]. This
usually means fetching a stream of video chunks. The application should know the
size of each chunk and may know the bitrate and the duration of each chunk and
the whole video. Disconnection of the TCP connection should be avoided because
that might have an effect that is visible to the user.

For this case, the application should set the Traffic Category to stream, the Time-
liness to stream, and Application Resilience to sensitive. It may also provide the
Stream Bitrate Received and Duration expected. Finally, the application may set
the the Cost Preferences to balance cost.

The OS can use this information and, e.g., use MPTCP if available to schedule
the traffic on the cheaper link (e.g., WiFi) while establishing an additional subflow
over an expensive link (e.g., LTE). If the desired bandwidth cannot be matched
by the cheaper link, the more expensive link can be added to satisfy the desired
bandwidth.

If the application sets the Cost Preferences to optimize cost, the OS would not
schedule traffic on the second subflow and the application has to reduce the video
quality to adapt to the available data rate.

3.5.3 SSH

Consider a user managing a remote machine via SSH. This usually involves at least
one long-lived console session and possibly file transfers using SCP or rsync multi-
plexed on the same association (e.g., a TCP connection).

For the packets sent for the console session, the application can set the Traffic
Category to control, the Burstiness to random bursts, the timeliness to interactive
and the resilience to sensitive. For the packets of the file transfers, SSH may set
both, the Traffic Category and Burstiness to bulk. It may also know the size of the
transfer and therefore sets Size to be Sent or Size to be Received.

Note that this use-case only works if either the socket interface supports setting
the Socket Intents on a per message level or supports multiple streams in a single
association (e.g., when using SCTP) and allows to set separate Socket Intents on
them. Depending on the protocols available, the OS can use this information to
schedule the streams over different links to meet their requirements (latency vs.
bandwidth) or optimize the transport, e.g., by setting appropriate Differentiated
Services Code Point [63, 64] (DSCP) values or by disabling TCP Nagle Algorithm
for console session related transmissions.

45

Chapter 3 Socket Intents: Expressing Applications’ Intents

3.6 Related Work

There is some previous work on applications specifying their requirements and needs.
Most of them focus on QoS, e.g., QSockets [65], rather than using the best-effort
approach of Socket Intent.

The term Intents has its origin in Intentional Networking [66], an attempt to
explore mobile network diversity by letting applications specify traffic characteristics
via an extended Socket API. However, they cannot support major Internet protocols
like HTTP because they only support message granularity, which is sufficient for
their use-case. Moreover, they imply guarantees while we suggest best-effort use.

The NEAT Transport API [67] allows applications to set neat properties to com-
municate their communication needs. The properties used within their prototype
are mostly used as requirements, but their capacity profile property allows simi-
lar optimizations as our category intent. The NEAT project was started after our
original Socket Intents paper [1] and collaborated with our project.

3.7 Discussion

The introduction of Socket Intents into the transport system may have various effects
on the OS and the network. In this section, we discuss these effects – beginning with
discussing how the API interaction changes, we will move though various aspects
until we look at possible effects on the Internet’s traffic pattern.

3.7.1 Socket Intents and API behavior

When called with the same set of parameters, behavior of the Socket API is very con-
sistent, even across different platforms. While its parameters take terminology from
the filesystem and inter process communication (IPC) domain, their effect on the
the network protocols is fully predictable and does not depend on external param-
eters. For example, requesting a socket of domain PF_INET with type SOCK_STREAM,
results always in a TCP socket, despite that SCTP could provide the same transport
service.

With Socket Intents, this base assumption changes: Intents, by their nature, are
interpreted by the transport system and setting them will have different outcome
depending on the device, environment and external parameters, such as interface
bandwidth. While this is a big shift of the API contract, because of the best-effort
nature of the internet, it is only a small change of the expected behavior of the
network. Still, it is unclear which developers welcome this shift of paradigm from a
consistent, application agnostic towards an intent-aware, application adaptive API
behavior.

46

3.7 Discussion

In addition, it is necessary to clearly separate parameters that are interpreted from
parameters that have consistent outcome. Failing to do so could be a slippery slope
towards interpreting all parameters and making the API unusable for application
that rely on consistent API behavior.

3.7.2 Applicability of Socket Intents to different Communication Units

At the beginning of this chapter, we state that an application should communicate its
intents on the finest possible granularity. When considering the design space, as done
in Chapter 2, this is indeed true. When considering implementation strategies of the
individual intents, the question at which granularity Socket Intents are most useful
depends on the available transport options and the implementation strategy. In this
section, we will discuss different transport features and how they can incorporate
information provided by Socket Intents.

The availability of fine-grained intents is most useful for message based transports
like UDP or HTTP (at request level). In these cases, the transport can perform
path and endpoint selection on a per-message level unless the application protocol
relies on stable endpoints.

In cases like HTTP, the cost of establishing new connections is significant. There-
fore, re-using connections whenever possible is crucial and the cost of opening a
new connection to choose different transport options often outweighs the benefits
that can be achieved by application aware transport option selection. In these cases,
strategies that allow path- and destination selection without establishing a new con-
nection for each request are advisable (see also Section 2.5.1). To achieve these goals
we anticipate two strategies: The first involves using a connection pool that holds
different transport configurations towards the same destination and establish/re-use
the most suitable one. The second strategy, which is limited to path selection, in-
volves using a multi-path aware transport protocol and assigns individual messages
to paths that are preferable for the given intents. To prevent head-of-line blocking,
this protocol should also support multi-streaming. Because of these requirements,
no “widely” available multi-path transport today is suitable for this: MPTCP is
neither message-aware nor does it not support multi-streaming and SCTP’s multi-
path support is only intended as a fallback. However, we expect multi-path QUIC
to support both requirements soon.

Finally, in cases where a stream-based transport is used to transport messages with-
out using a special connection reuse / scheduling scheme, the intents need to be
known when the stream transport is connected and will have no effect on transport
option selection when provided at message sending time.

47

Chapter 3 Socket Intents: Expressing Applications’ Intents

3.7.3 Interactions between Socket Intents and QoS

After presenting the SocketIntents concept at the 99th IETF Meeting in Prague, a
widely heard feedback was that Socket Intents were anticipated as a kind of “Best-
Effort ATM remake”. While some of the Socket Intent types defined in Section 3.4
have a direct corresponding QoS/Integrated Services (IntServ) property (Traffic
Category, Stream Bitrate Sent / Received) that was used in ATM, their meaning
is quite different: While in QoS/IntServ these properties are used to do mandatory
reservations, and therefore as a means for admission control, Socket Intents are
purely advisory: The application expresses what it knows about the communication,
what the traffic might look like and what the application can tolerate in oder to help
the transport system optimizing a best-effort transport on behalf of the application.
Therefore, no admission control is performed, but the most suitable transport is
provided, which might fail to meet the specified desired parameter. Even for the
Socket Intent Types that suggest generating an error in case the requested transport
service is not available, e.g., Cost Preference, this decision is local and not part of a
distributed, network wide admission control.

Therefore, Socket Intents and QoS/IntServ are orthogonal concepts: An application
should use QoS/IntServ in cases where it requires guarantees. If it wants best effort
service optimized for its needs, it should use Socket Intents. While the former is not
available end-to-end in today’s Internet, the latter is always available, but might
only perform as well as an un-optimized best effort service.

For the case of QoS/Differentiated Services (DiffServ), the relationship is more com-
plex. Socket Intents like the Traffic Category and transport system heuristics based
on Socket Intents like the Size to be Sent/Received do, indeed, imply DiffServ service
classes as described in [68]. Still, this is meant in a best-effort manner.

Overall, the relationship between Socket Intents and both QoS concepts, IntServ
and DiffServ, is a little confusing at first sight, but the distinction between both
should be clear enough to enable an application programmer to use the concept
that fits the application’s requirements.

3.7.4 Security Considerations

New communication channels and API paradigm always raise concerns whether they
open new attack vectors – Socket Intents are no exception to that. In particular,
we anticipate two kinds of attacks that may be enabled by using Socket Intents.

Performance Degradation Attacks As stated at the beginning of Section 3.3, we
assume that applications specify their preferences in a selfish, but not malicious way.
It is up to the OS to find a compromise between demands. A malicious application
could confuse the OS in a way that leads to scheduling traffic with certain Intents on
a more expensive interface, penalizing this traffic, or even rejecting it. We consider
the additional risk of this attack vector negligible: As the malicious application could

48

3.7 Discussion

also generate the traffic it claims to intent, it already has a much more powerful
attack vector. As a mitigation, the OS could monitor and compare the intents
specified with the traffic actually generated and notify the user if the usage of Socket
Intents is unusual or defective.

Information Leakage An implementation may expose different protocol parame-
ters on the PDUs to request special network treatment that matches the specified
intents. This may allow to gain information about streams or messages multiplexed
in the same encrypted association. These distinct parameters can enable an at-
tacker to gain some ground truth about the shares and timings of different kinds of
traffic. Therefore, application developers and policy implementors have to weight
the small additional information disclosure against the possible performance gains.
Using Socket Intents on Association level can be considered safe.

In addition, if used in conjunction with connection pools or multi-streaming pro-
tocols as described in Section 3.7.2, the scope in which connection pools or multi-
streaming connections are shared matches the protection domain. For example, in a
Web browser, this scope needs to be limited to a window/tab and and origin to pre-
vent other web-sites to gain insights on the user’s recent browsing activity through
a timing channel.

3.7.5 Interactions between Socket Intents and Traffic Pattern

While Socket Intents are only communicated to the local OS and therefore only
influence local decisions on the client, these decisions can have global effects. By en-
abling the OS to optimize application performance using transport option selection,
the diversity of the transport options used is likely to increase.

For the protocol dimension, that means that the strong dominance of TCP in the
internet traffic mix may become weaker and protocols like SCTP and QUIC may be
used more often. While these protocols are designed to be fair against TCP flows,
there might be scale effects that have not been observed so far.

In case of the path and destination dimension, the outcome of a wide-spread Socket
Intents deployment is mostly dependent on the actual policies that implement path
and destination selection. Still, this will most-likely shift a reasonable amount of
traffic from the default path and destinations used today towards paths and destina-
tions the policy assumes more appropriate for the specific communication unit. This
may put additional load on cellular networks (in cases where WiFi is used as default
today) and may interfere with server load balancing strategies used by CDNs today.
Depending on the quality of the policy, this will either distribute traffic more evenly
and allow to move traffic from congested links more quickly or cause congestion on
low-delay paths if the policies feedback mechanism is too slow or non-functional.
In the end, the OS’s transport option selection policy may become a component of
the transport system that is as crucial to work correctly as congestion control is
today.

49

Chapter 3 Socket Intents: Expressing Applications’ Intents

3.8 Conclusion

In this chapter, we introduce the concept of Socket Intents, their design rationals,
their usage, and discuss their effects on the OS and network. Socket Intents are a
great building block to make the transport system / OS smarter but need adoption
from application developers and OS vendors to prove useful.

From all aspect of this thesis, the concept of Socket Intents has the highest impact
so far. The concept of Socket Intents already influenced other work, including
NEAT [67] and Post Sockets [69]. The concept has become a contribution towards
the ITEF TAPS working group and has a good chance of becoming a component of
future Socket APIs.

50

4
Policy: Choosing Transport Options

Transport diversity is no advantage per se — it is an opportunity to optimize the
transport service for the individual applications’ needs. To approach this problem,
we first need to understand the design space, which is described in the previous
chapters: Chapter 2 explores the dimension of transport diversity and characterizes
what transport options this diversity provides and outlines how transport diversity
manifests in Internet’s protocols. In Chapter 3, we demonstrate a way to formulate
applications’ communication needs and introduce a mechanism to describe them. In
this chapter, we finally discuss how to choose among transport options and present
a generalized policy framework to realize this.

As a general requirement, our policy framework should enable all relevant stake-
holders in the system to express their preferences or constraints towards certain
transport configurations. These stakeholders include the system administrator of
an administrative domain, the user and system vendor of a specific device, the
provisioning domain of a path, as well as application vendors. Examples for those
interests include:

• A user prohibits the game “Fluffy Pufferfish” to use paths using cellular.
• A system vendor wants software updates larger than 256 KB to prefer paths

that are “cheap”.
• An LTE network prefers IMS voice traffic using their platform to be routed

via their LTE network.
• An application vendor wants the control traffic of its application to prefer

SCTP or MPTCP over TCP.
• A company’s system administrator prohibits its CRM system to use any paths

except the company’s VPN.

In order to explain the general structure of our policy framework, we start with
a naïve approach that describes the basic four steps that are needed in order to
perform transport option selection:

1. Determine the available transport options and their properties.
2. Eliminate transport options that are prohibited by policy entries.
3. Rank the remaining transport options based on the stakeholders’ interests and

application’s needs.
4. Choose the best transport option.

In practice, this naïve four-step approach does not suffice. To reliably choose among
transport options, we have to respect the dependencies between transport options.

51

Chapter 4 Policy: Choosing Transport Options

Not all properties, e.g., path characteristics, are readily available and we cannot
wait for results without impacting user experience. Therefore, we have to apply
heuristic. Moreover, we want to try the best-ranked transport options in parallel
to compensate for transport options that do not work and reduce the impact of
imprecise heuristics.

The remainder of this chapter is structured as follows: To derive the requirements
for the policy framework, we first discuss the dependencies that the transport option
selection has to take into account when building and ranking transport configura-
tions in Section 4.1. Most of these dependencies are latency related and result in
the need to parallelize the selection process. Then, in Section 4.2, we explain how
to represent transport configurations in a tree based structure. Next, to express
the stakeholders’ interest towards transport option selection, we propose policy en-
tries in Section 4.3. Policy entries are considered by our generic policy iff they
match a transport option or transport configuration while their actions determine
how to resolve trade-offs or purge depreciated transport configurations from the
transport configuration tree. In Section 4.5, we use a generalized variant of Happy
Eyeballs [49] to probe the most preferred transport configurations from the tree in
parallel. Finally, we summarize our findings in Section 4.6.

The policy framework described in this chapter is based on the experiences from
designing policies for our Multi-Access Prototype (Section 6.3.5) and for our Web
Transfer Simulator (Section 5.2), Moreover, it has been shaped by discussions within
the IETF Taps working group [70].

4.1 Policy Dependencies

To realize transport option selection within the OS, our policy framework has
to interact with other components of the OS that provide input for the policy.
These inputs include characteristics of all available paths — e.g., delay, bandwidth,
and packet loss, as described in Section 2.5 — the protocols available locally (see
Section 2.8), and name resolution to determine the available endpoints (see Sec-
tion 2.7).

Name Resolution

Session State

Destination Selection Path Selection Protocol Stack Composition

Caching

Figure 4.1: Dependencies between Transport options a Policy has to Respect.

52

4.1 Policy Dependencies

Combining these components is non-trivial since there are dependencies between
these mechanisms. Figure 4.1 gives an overview of the dependencies within trans-
port option selection a policy has to respect. Most other parts of transport option
selection depend on path selection because of the challenges and opportunities aris-
ing from on-path network functions — This has been already discussed in detail
in Section 2.5.4. In this section, we focus on the dependencies for caching and the
re-use of session state. Both are crucial for the user experience to minimize the
delay incurred by transport option selection and therefore become a dependency.
As we do not want to add delays to perform transport option selection, we have to
parallelize the process. Therefore, we describe the dependencies and timing issues
between the components that have to be addressed when parallelizing the process.

Name Resolution Name resolution depends on the path (see Section 2.7 for more
discussion). Therefore, the endpoints derived through name resolution should only
be used on the same path from which they were derived. In some cases, name
resolution also requires input from protocol stack composition, e.g., for protocols
that use SRV type DNS records to determine endpoints1. Therefore, name resolution
is constrained by the protocols available locally.

In addition, name resolution takes at least one RTT (of the path). Therefore, the
delay cost of waiting for name resolution on all paths to finish is the RTT of the
slowest path. Thus, if timeliness is essential for the given communication, name
resolution should not delay endpoint selection using other paths.

Local Session State Local session state, e.g., the existence of open TCP con-
nections, can influence transport option selection– especially if done at message or
stream granularity. The possibility to send a message using an already established
connection to save connection setup time and dramatically reduce the latency for
the application. This principle can be extended to other protocol layers as well. For
example, if confidentiality or integrity protection is needed, it is useful to check if
there is an already established IPSEC association or cached TLS state that can be
used to perform a 0-RTT handshake. Moving transport option selection from the
application to the OS can also enable using these optimizations across application
boundaries.

Caching Caching is crucial for name resolution performance and transport config-
uration probing, especially when transport option selection is done for fine-grained
communication units. Using cached results save at least one RTT of connection
setup time each. If there are cached results for some transport options, the policy
has to handle the trade-off between saving communication setup time and using the
best transport option requiring non-cached state.
1 The DNS query for an SRV record already contains the protocol stack to be used — a name

resolution failure already allows excluding this protocol stack composition.

53

Chapter 4 Policy: Choosing Transport Options

4.2 Determining Transport Configurations

In order to choose the most suitable transport configuration, we place the individual
transport options in a data structure the policy can operate on. This data structure
has to reflect the dependencies explained in Section 4.1: We let the dependencies
between the transport options implicitly structure transport options into a tree,
whereby each level of the tree corresponds to a dimension of choice [70]. The paths
from the root to the leaves represent complete transport configurations.

Figure 4.2 presents a partial example2 of such a transport configuration tree. The
root of this tree is the destination representation provided by the application. This
destination representation is annotated with the hard communication requirements
(shown in red) as well as Socket Intents (shown in green). As protocol stacks and
paths are independent, we choose, w.l.o.g., level 1 to represent protocol stack choices,
level 2 to represent the path choices3. and level 3, to represent the endpoints derived
from name resolution. All the nodes are annotated with the information available
for the respective transport option: hard requirements (shown in red), optional
external information like Socket Intents (shown in green), heuristically determined
information (shown in purple) and protocol state (shown in cyan). In addition to
the properties we discuss in Chapter 2, these can include any path, protocol, and
endpoint specific information.

To construct the tree representation, we start at the root of the tree: Based on
the application’s requirement, we determine available protocol stack compositions,
see Section 2.8, and place them on level 1 of the tree. Beneath, at level 2, we
place the path candidates. Path candidates do not depend on the destination as we
treat path characteristics as properties of the local interface representing the path
(Section 2.5). Note that the filtering and ranking process, see Section 4.4, operates
intertwined with the tree construction; the policy purges paths that are infeasible
for the given destination before the next step. Name resolution has to be performed
for each of the feasible paths. Once the name resolution has derived endpoints for
a path, the corresponding nodes are placed into level 3 the decision tree. Finally,
each path from the root to the leaves of the tree represents a feasible transport
configuration.

While the policy ranks transport options and filters nodes from the three (see Sec-
tion 4.4), we also start probing transport configurations (see Section 4.5) once suf-
ficiently ranked transport configurations are determined. We discuss the details of
these aspects in the next sections.

2Level 2 and 3 beneath the “QIIC/UDP/IPv6” protocol stack composition have been omitted
to improve readability as they carry roughly the same annotations as the nodes beneath “TL-
S/TCP/IPv6”.

3 Since we consider the protocol stack choice, we differ from the decision tree in [70] which roots
on the (destinationrepresentation, service) tuple.

54

4.2 Determining Transport Configurations

D
es

tin
at

io
n

by
te

 s
tre

am
gr

an
ul

ar
ity

20
M

iB
si

ze
 to

 b
e

re
ce

iv
ed

bu
lk

 tr
an

sf
er

tra
ffi

c
ca

te
go

ry

re
lia

bl
e,

 c
on

fid
en

tia
l,

in
te

gr
ity

 p
ro

te
ct

ed
tra

ns
po

rt
re

qu
ire

m
en

ts

ht
tp

s
se

rv
ic

e
w

w
w.

ex
am

pl
e.

co
m

ho
st

na
m

e

Pa
th

: e
n0

 /
20

01
:D

B8
:F

A2
3:

:2
3:

5

20
01

:D
B8

:F
A2

3:
:2

3:
5

so
ur

ce
 a

dd
re

ss

fla
t

in
te

rfa
ce

en
0

30
m

s
24

 M
bi

t/s
rtt

 e
st

im
at

e
ba

nd
w

id
th

 e
st

im
at

e
bi

llin
g

st
ru

ct
ur

e
ac

ce
ss

 te
ch

no
no

ly
pr

ov
is

io
ni

ng
 d

om
ai

n
re

si
de

nt
ia

l /
 V

D
SL

2
ho

m
e.

m
yl

an
dl

in
e.

co
m

Pa
th

: p
pp

0
/ 2

00
1:

D
B8

:E
42

::5
:9

:2

20
01

:D
B8

:F
A2

3:
:2

3:
5

so
ur

ce
 a

dd
re

ss

vo
lu

m
e

ca
p

in
te

rfa
ce

pp
p0

70
m

s
48

M
Bi

t/s
rtt

 e
st

im
at

e
ba

nd
w

id
th

 e
st

im
at

e
bi

llin
g

st
ru

ct
ur

e
ac

ce
ss

 te
ch

no
no

ly
pr

ov
is

io
ni

ng
 d

om
ai

n
ce

llu
la

r /
 L

TE
lte

.c
el

lp
ro

vi
de

r.c
om

En
dp

oi
nt

: 2
00

1:
D

B8
:F

A2
5:

:1
7:

3
de

st
in

at
io

n
ad

dr
es

s
20

01
:D

B8
:F

A2
5:

:1
7:

3

ho
st

na
m

e
cd

n4
7.

m
yl

an
dl

in
e.

co
m

44
3

fa
ls

e
tls

 c
on

te
xt

 re
su

m
ab

le

de
st

in
at

io
n

po
rt

En
dp

oi
nt

: 2
00

1:
D

B8
:5

2:
:2

9:
7

de
st

in
at

io
n

ad
dr

es
s

20
01

:D
B8

:5
2:

:2
9:

7

tru
e

2424
 M

bi
t/s

tc
p

w
in

do
w

 s
av

ed
tc

p
sr

tt
tls

 c
on

te
xt

 re
su

m
ab

le
ho

st
na

m
e

de
st

in
at

io
n

po
rt

w
w

w
29

.c
dn

47
.n

et
44

3

En
dp

oi
nt

: 2
00

1:
D

B8
:5

2:
:2

9:
7

de
st

in
at

io
n

ad
dr

es
s

20
01

:D
B8

:5
2:

:2
9:

7

fa
ls

e
tls

 c
on

te
xt

 re
su

m
ab

le
ho

st
na

m
e

de
st

in
at

io
n

po
rt

w
w

w
29

.c
dn

47
.n

et
44

3

St
ac

k:
 T

LS
/T

C
P/

IP
v6

gr
an

ul
ar

ity
by

te
 s

tre
am

re
lia

bl
e,

 c
on

fid
en

tia
l,

in
te

gr
ity

 p
ro

te
ct

ed
tra

ns
po

rt
se

rv
ic

es

St
ac

k:
 Q

U
IC

/U
D

P/
IP

v6
by

te
 s

tre
am

gr
an

ul
ar

ity
re

lia
bl

e,
 c

on
fid

en
tia

l,
in

te
gr

ity
 p

ro
te

ct
ed

tra
ns

po
rt

se
rv

ic
es

Protocol
Stack

Path EndpointApplications’
Destination

Representation

Fi
gu

re
4.

2:
Pa

rt
ia

le
xa

m
pl

e
of

a
tr

ee
re

pr
es

en
ta

tio
n

us
ed

by
ou

r
ge

ne
ric

po
lic

y
fr

am
ew

or
k.

55

Chapter 4 Policy: Choosing Transport Options

4.3 Policy entries

In order to explain the ranking and purging process, we first introduce the concept
of policy entries. Policy entries allow the stakeholders involved to express their
preferences and constraints towards transport option selection. Therefore, the actual
policy is being composed from a set of policy entries and expressed in a domain
specific language.

Policy entries are tuples of the form (P,A), whereby P is a pattern that matches
paths in the decision tree, and A is a set of actions to apply to matching paths.
Policy entries are considered if they match a transport option or transport configu-
ration while their actions determine how to resolve trade-offs or purge the matching
transport configurations, while their effects cascade, i.e., incrementally modify the
transport configuration tree introduced in Section 4.2.

A policy entry can match on almost any information present in the transport config-
uration tree. That means it can match on application requirements, Socket Intents,
transport option properties annotated on the nodes and other system state reflected
on the transport options including cache state and existing connections. In order to
prevent blocking the evaluation, e.g., by requiring name resolution results of other
paths, policy entries cannot reference or compare against other transport configu-
rations (they are not allowed to look into other branches of the tree). This also
prevents introducing circular dependencies. Comparison across branches is solely
based on assigning a weight on them which is inherited by its children and is taken
into account by policy entries matching later on and the probing process. We cur-
rently do not consider external services for the same reason — instead, we assume
that information from these services is either available from system state or collected
as part of the name resolution.

If a policy entry matches, it can perform any of the following actions on the matching
branch of the transport configuration tree:

• Assign or change the weight on the matching branch.
• Purge branches of the tree, e.g., in case these transport configurations do not

meet basic requirements or the combination of transport options is depreci-
ated.

• Retain branches of the tree to override a purge request, e.g., to override policy
entries provided by other stakeholders.

• Add annotations on nodes, i.a., to enabling other policy entries to use them
or match on them.

• Tune the transport option within the respective transport configuration, e.g.,
set DSCP for IP or disable the Nagle Algorithm [71] for TCP.

To provide a sensible default behavior, we expect an OS to be shipped with a
reasonable set of default policy entries, e.g., to prefer IPv6 over IPv4. Note that
policy entries can also include requirements specified by application provided policy
entries as well as configured policies, e.g., to force certain applications to use a VPN.
Therefore, policy entries need to be applied in an order that guarantees that the

56

4.4 Filtering and Ranking Transport Configurations

preferences of certain stakeholders can override the preferences of the others. To
reduce complexity, we do not consider an additional priority mechanism. In the
next section, we explain how policy entries are applied and how conflicts between
actions are resolved to compose the actual policy.

4.4 Filtering and Ranking Transport Configurations

The actual transport option selection is done by filtering and ranking transport
configurations. For each level of the tree from Section 4.2, this is done in two steps:
First, our generic policy framework purges all transport options that do not meet
hard requirements specified as a property of the destination (as shown in red on
level 0 of Figure 4.2). Second, the matching policy entries are applied. To avoid
latency, both steps are applied as early as possible.

When transport options are placed into the decision tree, hard requirements and
matching policy entries are checked immediately and executed if possible. As actions
of policy entries may conflict, it is necessary to check for conflicts with higher priority
actions that may still match later on. This can happen in cases when a policy
entry with higher priority matches multiple levels of a transport configuration while
the conflicting lower priority entry only matches a lower level of the tree. For
example, an application supplied policy entry may purge all transport options that
use IPv6, but a user policy entry to prefer IPv6 for certain PvDs may cancel this
action. In these cases, executing actions must be delayed and determining transport
configurations must continue until the conflicting entry matches or does not match.
Once all actions on a node are executed or marked as delayed, the next level of the
tree can be populated.

After determining the transport options at all levels and applying all matching policy
entries, the resulting decision tree only contains acceptable transport configurations.
Also, each transport configuration/ leaf of the tree has a weight assigned that can
be used as a preference for Happy Eyeballs on Steroids (HEoS). Still, the tree may
still be incomplete as other transport configurations/ leaves can still be added by
the determination process.

4.5 Probing Transport Configurations: Happy Eyeballs on
Steroids

As stated earlier, purely relying on using the highest transport configurations is not
sufficient. We can neither be sure that our path characteristics are accurate nor can
we be certain that the transport configuration is practical, e.g., whether the derived
endpoint is available and supports the chosen protocol stack composition. Yet, test-
ing all transport configurations in order of their rank is also not sufficient, as even a
short timeout of a few RTTs dramatically impacts user experience for many appli-
cations. Thus, we generalize the ideas of Happy Eyeballs [49] to parallelize probing

57

Chapter 4 Policy: Choosing Transport Options

of transport configurations. Recall, Happy Eyeballs is a biased connection race that
was originally developed as an IPv6 transition technology. It starts connection via
IPv4 and IPv6 in parallel and uses the first connection. By giving IPv6 a few ms
advantage, the “connection racing” is biased towards IPv6.

Instead of ”‘just”’ trying to connect via IPv4 and IPv6 in parallel, our generalized4

Happy Eyeballs on Steroids (HEoS) tries a small set of transport configurations and
uses the weight from the ranking process as a bias for a connection race. Hereby, we
use small weight-differences as time bias while large weight-differences will usually
result in using the transport configurations as fallback only. Once one or more of
the connections competing in the race are set up, HEoS picks the highest ranked
connection that was established within a policy-determined time frame, e.g., within
a few tenths of milliseconds.

As the connection racing starts immediately when the transport option that com-
pletes a transport configuration is placed in the tree, the time needed for name
resolution already generates a bias towards endpoints with fast name servers. If
this effect is not wanted, e.g., for an application that is willing to trade delay for
bandwidth, HEoS should delay probing for transport configurations that are below
a certain weight or add an initial delay before using the highest ranked transport
configuration.

4.6 Conclusion

In this chapter, we complete the general discussion on how to exploit transport
diversity. We introduce a generic policy framework that allows us to combine pro-
tocol stack composition, path selection, and endpoint selection without introducing
unnecessary latency. In our framework, the policy that decides which transport
options to use is composed from a set of policy entries which allow applications,
the user, and other stakeholders to express the interests towards transport option
selection. The composed policy is then executed by the OS.

While we provide this generalized policy mainly as outlook how transport option
selection can be implemented, some of the ideas discussed in this chapter have
already become state-of-the-art during assembling of this thesis. A simpler version
of the transport option selection tree discussed in Section 4.2 is being standardized
within the IETF TAPS working group [12] and (partially) implemented as part of
Apple’s next-generation networking API. However, a concrete representation of the
policy entries, their application and their pattern of interaction to derive useful
rankings is left for future research. Also, it is an open question how many parallel
connection probes HEoS should attempt to choose decent transport options without
putting too much load on the Internet and server infrastructure.

4Papastergiou et al. already show a version of Happy Eyeballs generalized for protocol selection
beyond IP version [72], but do not include the two other dimensions of transport option selection.

58

5
Performance Study: Web Site Delivery

In the previous chapters, we focus on the potential of transport option selection and
on the building blocks that enable exploiting transport diversity. In this chapter,
we study an example use-case that (potentially) can benefit from transport option
selection: Web browsing.

To quantify these benefits, we use a custom, flow-based Web transfer simulator to
study the effects of different means to combine multiple paths on page load times.
Our study uses the landing pages of the Alexa Top 100 and Top 1000 Web sites as a
representative set of workloads and covers sets of a wide range of different network
characteristics. For these network characteristics, we vary RTT and bandwidth of
the two paths. The strategies either just use one interface or distribute the loading of
the individual Web objects over the two paths. As a means of distribution, we either
assign requests to paths or use MPTCP to use both paths at the same time. The two
resemble the architecture for exploiting transport option selection used throughout
the remainder of this thesis, we call the combination of scheduling strategy and
means policies. Some of these policies make use of the size to be received Intent
annotating the object size of objects to be received, as described in Section 3.4.

The remainder of this chapter is structured as follows: First, we explain the overall
methodology (Section 5.1) and the rationals behind it. Then, we introduce the
policies (Section 5.2) that model the scheduling strategies as a means to distribute
the individual requests and discuss the workload (Section 5.3) used throughout this
chapter. Afterwards, in Section 5.4, we present our Web transfer simulator used in
this evaluation and validate it against our workload and the Multi-Access Prototype
(Section 5.5). Finally, we put all together and evaluate the overall benefits of using
multiple paths for Web site delivery in Section 5.6.

59

Chapter 5 Performance Study: Web Site Delivery

5.1 Methodology

Before discussing the details of our simulator study, we want to revisit the ratio-
nals and assumptions behind our study. The basic idea of this study is to evaluate
the potential benefits of exploiting one dimension of transport diversity (multiple
paths) and compare the effects of application-aware and application-agnostic poli-
cies. Therefore, we focus on using realistic workloads — the landing pages of the
Alexa Top 100 and Top 1000 Web sites — and a basic network scenario — two paths
towards a single server that share no common bottleneck. Within this scenario, we
evaluate the effects of the policies under a wide range of network characteristics.
Given this goals, we now revisit some central decisions with regards to the metric
used in the evaluation (Section 5.1.1), the choice to using a custom simulator (Sec-
tion 5.1.2) and the basic network scenario (Section 5.1.3). Afterwards, we highlight
important details on how we model connection reuse (Section 5.1.4) and how we
simulate TCP (Section 5.1.5) and MPTCP (Section 5.1.6) behavior.

5.1.1 Metric: Page Load Time

To evaluate the influence of our policies, i.e., path selection strategies, on the Web
site delivery performance, we focus on page load time as a metric. We use the
definition of the page load time as the time between the initial HTTP request and
the completion of the last response. While the complete time to display a Web page
also includes times for DNS resolution, page rendering and possibly client-side JS
computation, these factors are not subject to our policies and we, therefore, exclude
them from our evaluation. The page load time is one of the dominant factors
of the time needed to display the Web page, and it is considered a reasonable
approximation of the end-user Quality of Experience metric [73]. Related work
criticizes using page load time as performance metric and suggests to use a different
performance metric [74] that focuses on the load times of the Web page objects that
have the highest user impact. We refrained from using the metric as it would require
an extensive user study which would prevent us from using a large set of Web pages
and repetitions. Still, our remaining methodology could be applied to these subsets
as future work.

5.1.2 Using a Custom Simulator

Page load time is often measured as part of Web page profiling within a Web browser.
While we use this approach in Section 6.4, for a smaller study, we could not use
this approach for a large study covering a large set of Web pages, in our case,
the Alexa Top 100 and Top 1000. This limitation originates from the structure of
Web pages and the complexity involved: Page load events are triggered by DOM
events (referencing/rendering of contents or driven by JavaScript). This makes
the page load time dependent on the rendering and execution of JavaScript. As

60

5.1 Methodology

JavaScript is turing complete and contains non-deterministic operators, the effect of
these dependencies are theoretically undecidable and practically often heavily skew
the page load time.

Depending on whether using the profiling tools in a testbed or on the internet, this
results in different problems we can avoid by using a simulator:

• Experiments with mirrored Web pages in a testbed show that JavaScript often
behaves differently than on the original page — this is especially the case for
advertisements, as they often contact multi-level backend services or request
randomized resources. This often causes Web pages to stall in the testbed and
therefore renders the majority of the Alexa Top 100 Web sites useless for a
testbed study. As the Simulator only uses a single dependency tree extracted
from the Web browsers profiling data and models the downloads itself, we do
not have to care about stalls and non-deterministic behavior.

• When moving from the testbed to the Internet, we must also take non-deterministic
behavior into account. In addition to that, the contents of some Web pages
change dramatically over time. Network conditions (RTT and bandwidth)
also change, e.g., through time-of-day effects or changed content delivery net-
work (CDN) configurations. Carrying out a study on the Internet would get
realistic, but nor reproducible results for which we can hardly determine the
influence of our policies. As the simulator gets a single dependency tree of
Web objects for all network scenarios and policies and does not depend on ex-
ternal network conditions, we get fully reproducible results without external
factors skewing the results.

In addition to these problems, the anticipated use of the size to be received Intent
can be simulated much easier than it can be emulated within an instrumented Web
browser : For the simulator, we can assume to know the sizes of the objects a
priory. In the instrumented Web browser, we either have to probe them, as done in
our testbed study in Section 6.4, or use cache the file sizes for known URLs.

While using a simulator has great advantages with respect to reproducibility, iso-
lation of influencing factors, and complexity, these come at cost of realism. We
acknowledge that our study ignores effects such as choices made by JavaScript code,
interactions with Web browser and CDN optimizations. We also ignore all packet-
level effects and may miss additional un-anticipated effects.

5.1.3 Network Scenario

Our network scenario is based on the assumption that, for mobile devices, the access
networks almost always dominates the overall network performance, i.e., the band-
width bottleneck is most likely located within the access network. Also, the access
network often contributes the largest part of the path delay, e.g., due to bandwidth
allocation and Forward Error Correction (FEC) schemes used within the access net-
works’ data link layer. In comparison, Internet backbone delays are in the order of
a few milliseconds while access delays are typically significantly larger.

61

Chapter 5 Performance Study: Web Site Delivery

Internet

Web Servers

Client Path A
[RTT, Bandwith]

Path B
[RTT, Bandwith]

Figure 5.1: Simplified Network Scenario.

Thus, our network scenario, see Figure 5.1, consists of a client device, Web servers,
and the paths between them. We presume that all Web servers are reachable via
both network paths and that the paths share no bandwidth bottleneck. Moreover,
we choose to neglect the RTT variability introduced by the Internet since queuing
delays on Internet core links (≥10 Gbit/s bandwidth) are negligible [31]. Therefore,
we can capture the path characteristics as “interface” RTT and bandwidth.

5.1.4 Connection Limits and Connection Reuse

For multiple requests retrieved from the same server, our simulator supports per-
sistent connections with and without pipelining. To decide whether pipelining is
possible, we assume a separate server for each hostname. Pipelining is used when-
ever it reduces loading time for the respective objects, or when a new connection
would be faster, but any of connection limits apply. It uses a default connection
timeout of 30 seconds and limits the number of parallel connections per server to 6
and the overall number of connections to 17. These values correspond to the defaults
of the browser we use to retrieve our workload. We acknowledge that the parallel
connections somehow defeat the idea of TCP fairness on a per-connection level, but
still provide some fairness as the number of parallel connections is limited.

5.1.5 TCP Simulation

We assume loading a Web site results in a lot of new connections to different hosts
with only a small number of these connections being bandwidth limited. See Sec-
tion 5.3.2 to see that our workload matches this assumption. Despite not being
limited by the path bandwidth, some of these connections may be limited by TCP
slow-start. To capture this effect of TCP slow-start, we go beyond a traditional
flow-based simulation and include it in our simulation. In our simulator, a TCP
connection starts in slow-start with a congestion window of ten times MSS.

Rather than fully simulating the congestion avoidance of TCP, we assume instanta-
neous convergence to the appropriate bandwidth share. Once the connection leaves
slow-start by reaching the available bandwidth share, it never returns to slow-start.
Our underlying assumption is that TCP tries to fairly share the available bandwidth
between all parallel connections once TCP leaves slow-start [75].

62

5.2 Simulator Policies

5.1.6 MPTCP Simulation

Our simulation of MPTCP is rather simplistic: We simulate two regular TCP con-
nections (subflows) and map bytes to be sent over the MPTCP connection to one of
these subflows once the congestion window allows additional bytes being sent. Still,
our simulation of MPTCP is fair against regular TCP: As our network scenario
(Section 5.1.3) assumes the two paths have no shared bottleneck, only one subflow
of each MPTCP connection has to compete with a regular TCP connection. There-
fore, we do not need to implement coupled congestion control as coupled congestion
control would not effect fairness.

5.2 Simulator Policies

In Chapter 4, we defined policies as entities that filter and rank transport options.
In this chapter, we only focus on path selection based on different path properties.
Therefore, for this chapter, we define policies as entities that decide for each com-
munication unit which path to use. These policies still can range from simple, static
configurations up to complex dynamic algorithms that try to take full advantage of
the available information.

For deciding which path to choose, we present the Earliest Arrival First (EAF
policy) — a policy that fits our use case of Web browsing: Objects of different
sizes can be fetched over different interfaces and the download time largely depends
on the object’s file size as well as the RTT and available bandwidth on the path.
Assuming that there are at least two access networks and they vary in RTT and
bandwidth, our intuition is that if the communication unit is small, the policy should
choose the interface with the shorter RTT. If the communication unit is large, it
should prefer the interface with greater available bandwidth. Thus, each unit is
scheduled on the interface with the earlier arrival time, resulting in shorter overall
completion time. As input for the EAF policy, we use the size to be received Intent
(see Section 3.4). The size to be received Intent allows an application, e.g., an HTTP
client, to communicate the size of each object as a communication unit which is to
be transferred. We also combine the EAF policy with MPTCP to split large objects
and distribute their download over both interfaces.

To evaluate the benefits of our EAF policy for Web traffic, we realize them in our
Web transfer simulator along with other basic policies used as a comparison baseline.
Since the simulator tries to provide an upper bound of the benefits, it uses global
knowledge about all currently active transfers and, in contrast to the EAF policy
in Section 6.3.5, does not rely on heuristics. The RTT and maximum interface
bandwidth, as well as the size of the objects for the size to be received Intent, are
known a priori — differing from the EAF policy in Section 6.4, no two-step download
is needed. Our simulator supports the following policies:

63

Chapter 5 Performance Study: Web Site Delivery

5.2.1 Baseline Policies

The Single Interface policy always chooses the path using a particular, statically
configured interface. Therefore, this policy is equivalent to a client that only has
the specific interface or only uses this interface. As we only have two paths in our
scenarios, we name the instances of this policy after the interface they use Interface
1 and Interface 2.

The Round Robin policy uses multiple interfaces on a round robin basis. It accepts
the interface used for the first request (of a simulation) as a parameter.

5.2.2 MPTCP

This policy uses MPTCP with the full-mesh path manager across all interfaces.
It presumes that MPTCP subflows can be opened on all local and remote inter-
faces. With two network interfaces at the client and one interface at the server, the
policy establishes two subflows. The interface for the initial subflow is given as a
parameter. This policy considers neither the Socket Intents nor the current network
performance. For MPTCP, we considered two variants: starting the initial MPTCP
subflow on the same statically chosen interface or always on a different, randomly
chosen interface. The simulation of EAF_MPTCP is analogous to the EAF policy,
but it includes predictions with MPTCP for all interface combinations, therefore
using the interface for the first subflow that is predicted to give the best results.

5.2.3 Earliest Arrival First Policy

The Earliest Arrival First (EAF) policy variants use the size to be received Intent to
predict the transfer completion time. For each communication unit, i.e., each HTTP
request, the EAF policy predicts the transfer completion time for each available path
or path combinations and chooses the one where the communication unit will arrive
first.

For our first variant, EAF, our prediction is based on an estimation of the interface
RTT, the available bandwidth and the other transfers already scheduled on this
path: First, we estimate the available bandwidth. As we assume TCP fairness, we
assume to get a fair share of the path bandwidth for each concurrent transfer. To
approximate the download duration, we then divide the size of the communication
unit by the estimated available bandwidth. This approximate is refined by taking
TCP slow-start1 into account. Additionally, we model the connection setup and
request times: we add one RTT if a connection can be reused, or two RTTs if a
new connection has to be established; we add two additional RTT for each TLS
handshake.
1See Section 5.4.1 for details

64

5.3 Simulator Workload

While the first variant, EAF, distributes whole communication units, the Earliest
Arrival First with MPTCP variant (EAF_MPTCP) combines the EAF Policy with
MPTCP. In addition to predicting the arrival time for each path, it also considers
MPTCP for all possible path combinations. The intuition behind EAF_MPTCP
is that MPTCP is beneficial for some, not all cases. For example, this policy can
avoid scheduling small communication units on a path combination that includes
high RTT paths.

Overall, we expect that either EAF or EAF_MPTCP yields the best performance.
The advantage of the former is that it can distribute the objects over multiple
parallel TCP connections. The advantage of the latter is that it can distribute data
at a finer-grained level than per communication unit/request granularity and choose
a good interface for the initial subflow.

5.3 Simulator Workload

As we want to evaluate the benefits of different path selection strategies for Web
browsing, the simulator needs a description of the Web pages as well as the depen-
dencies among the Web objects as input. Accordingly, we next discuss which Web
pages we focus on, how we extract the dependencies and the characteristics of the
Web workload.

Since Web pages vary significantly in size, number of objects, number of servers,
etc., we do not focus on any particular Web page but rather a diverse set of popular
Web sites. Therefore, we acquired the landing pages of the Alexa Top 100 Web sites
on 26 consecutive days starting on December 07 2015 and the Alexa Top 1000 Web
sites on October 10 20162. We focus on the mobile version of the pages by overriding
the user-agent of our Firefox browser, impersonating a generic Android device3.

5.3.1 Web Workload Acquisition

Due to the popularity of JavaScript, it is not sufficient to fetch the pages and all
its embedded resources using tools such as wget. Therefore, we use Firefox version
38.4.0 automated with Selenium, as well as the Firebug 2.0.13 and NetExport 0.9b7
plugins to record the crawled Web pages in the HTTP Archive (HAR) format.

Each HAR file contains a summary of all objects of the page as well as their sizes,
types, origins (remote sites), and timings. Since some HAR files can be malformed
or contain no objects due to Web site downtime, connection loss, socket timeouts,
or problems with the Firebug plugin, we trigger a repeated download of Web sites
until we get at least one complete HAR file. We do not impose any network con-
straints mobile devices might experience. Our motivation is that we want to gather
2
http://www.alexa.com/topsites

3 We use the User Agent string Mozilla/5.0 (Linux; Android 4.2.2; SOL22 Build/10.3.1.D.0.220)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.102 Mobile Safari/537.36

65

http://www.alexa.com/topsites

Chapter 5 Performance Study: Web Site Delivery

the dependencies within the Web page rather than restrictions imposed by limited
network bandwidth. For the Web crawl, we use a single vantage point with a high
available network bandwidth: A virtual machine within a university network. Due
to the client’s geolocation, the results may be biased towards Germany.

5.3.2 Web Workload Properties

To highlight how different the various Web pages are Figure 5.2 shows the empirical
cumulative distributions of the number of objects per page as well as the number of
hosts per page from our Alexa Top 100 crawl.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 10 100 10^3 10^4 10^5 10^6 10^7
x

EC
D

F

Object size
Page size
hosts
objects

Figure 5.2: Web workload properties.

While most of the pages comprise between 1 and 50 objects, there are some with
more than 100 objects or even up to 260 objects. Moreover, many Web pages have a
low median object size. Furthermore, the number of hosts that have to be contacted
ranges from a single one to more than 20 with a median of 7. Figure 5.2 also shows
the empirical cumulative distribution of the individual Web objects as well as the
total number of bytes per Web page using a logarithmic x-axis. Both distributions
are highly skewed. In particular, we find that the object size distribution is consis-
tent with a heavy-tailed distribution. The total size of the Web pages is between
23.1 KB (5th quantile) and 1.8MB (95th quantile) with a large fraction of pages
below 300 KB. These results are in line with previous work [76, 77].

5.3.3 Web Object Dependencies

While identifying all objects of a Web page from the HAR files is straightforward
this does not apply to the object dependencies. Some object dependencies are obvi-
ous from the base page, the HTML document, and the client-side DOM. However,
JavaScript or other Web objects can modify the DOM, by adding or removing Web
page objects, at any point during the page load. For example, when a Web site uses

66

5.4 Web Transfer Simulator

JavaScript to load pictures dynamically, the simulator should not start downloading
these pictures before the JavaScript object has been retrieved. After all, the browser
first has to parse the JavaScript before it can download the pictures.

We decided against using sophisticated systems, like Polaris [78], since their focus
is on finding the true dependency tree to speed up future downloads. Thus, using
these dependencies often leads to much more optimistic results compared to the
capabilities of current browsers. To ensure compatibility, we use a more conservative
heuristic. We identify the dependencies from the download times contained in the
HAR files. This method is feasible since we use a non-bandwidth limited client to
gather the HAR files. Given that a browser cannot start a transfer when it has not
yet downloaded the object it depends upon, we assume that Web objects that are
downloaded in parallel do not depend on each other. The same holds for an object
that has started to download while a previous object has not yet finished. If the
first object is not yet done, it cannot initiate the transfer of the second one.

5.4 Web Transfer Simulator

To evaluate the benefits of seamlessly using multiple paths and scheduling requests
according to our policies, we build an event-based Web transfer simulator. We
choose to focus on a simulator rather than an emulator since it allows us to cover a
much larger parameter space and allows us to experiment with more policies.

For each run, the simulator takes the following input: A Web page including all
Web objects and their dependencies represented as a HAR file, see Section 5.3), the
policy, and a list of network interfaces with their path characteristics. The simulator
replays the Web page download by transferring all Web page objects while respecting
their inter-dependencies. It uses the policy to distribute the object transfers across
the interfaces and calculates the total page load time.

5.4.1 Simulator Design

Our Web transfer simulator is a discrete event simulator, driven by the Web objects
and their dependencies. Since our simulator knows all object inter-dependencies a
priori, it can decide when a transfer can be scheduled, i.e., whether all objects that
it depends upon have already been loaded. To schedule a transfer, we assign it to a
connection. This assignment is the job of the policy module which returns either an
existing TCP or MPTCP connection, an interface, or a list of interfaces to use for the
new connection. If the limit of parallel connections has been reached, it postpones
the transfer. A connection is reused if the hostname matches and it is either idle or
it is expected to become idle before a new connection can be established.

The simulator then determines the next event for this connection and updates the
global event list. A connection event can be the completion of a transfer or a TCP
event. TCP events are triggered by connection handling, TLS handshake, changed

67

Chapter 5 Performance Study: Web Site Delivery

available bandwidth share, and once per RTT during slow-start. To simulate slow-
start and fair bandwidth sharing, we keep track of the current throughput for each
connection. The throughput is updated according to TCP slow-start and capped
by the congestion window or the available bandwidth share of that interface to
assure TCP fairness. The available bandwidth share of each interface is potentially
adjusted by each connection event for that interface. If needed the time of the next
event is then adjusted accordingly. When a transfer finishes, the simulator records
the time, marks all transfers that depend on it as enabled, and schedules them. If
the last transfer finishes, the total page load time is reported.

The simulator supports persistent connections with and without pipelining for TCP
as well as MPTCP connections across multiple interfaces. It uses a default connec-
tion timeout of 30 seconds and limits the number of parallel connections per server
to 6 and the overall number of connections to 174. We simulate TCP slow-start
using a configurable initial congestion window size with a default value of 10 seg-
ments [79].

The policies in our simulator can reuse the simulator logic to obtain predictions.
They can obtain an estimate of the completion time given the current state of the
simulator and an interface/connection option for the transfer to be scheduled. This
prediction process is realized by partially cloning the simulator’s state, including all
currently active transfers, and running the simulation loop till the given transfer
completes.

5.4.2 Simulator Implementation

We implemented our data transfer simulator as a heap-based discrete event simula-
tor. It consists of 3k lines of Python code and is available under a relaxed CRAPL
license and is published on GitHub (https://github.com/fg-inet/dtsimulator). It
models the process of loading a Web page by keeping track of the status of the
transfers, connections, and interfaces.

Each transfer corresponds to a Web object which contains the object size, its rela-
tionship to other transfers, whether the object is transferred via HTTPS, and the
server hostname. The connections are responsible for estimating and updating the
completion times of the transfers which are assigned to them and for simulating
TCP or MPTCP. In the case of MPTCP, we maintain a master connection and per-
interface subflows. The interfaces bundle the connections and are used to calculate
the available bandwidth shares.

The transfer-manager keeps track of all transfers and informs the policy if a transfer
can be scheduled. The policy is the central decision-making entity of the simulation.
The policy determines which interface(s) to use or which connection to re-use for
each transfer by choosing the most appropriate one. The policy then notifies the
transfer-manager to schedule the transfer.
4These values correspond to the defaults of the browser we use to retrieve our workload.

68

https://github.com/fg-inet/dtsimulator

5.5 Web Transfer Simulator Validation

MPTCP subflow 1

interface 1

bandwidth
RTT

connections

transfer 2

size
parent

remaining
RTT

transfer manager

transfers

interface 2

bandwidth
RTT

connections

TCP connection 1

desired bw.
outstanding bytes

transfers

MPTCP connection 1

desired bw.
outstanding bytes

transfers

subflows

MPTCP subflow 2

desired bw.
outstanding bytes

desired bw.
outstanding bytes

transfer 3 transfer 4

size
parent

remaining
RTT

size
parent

remaining
RTT

transfer 5

size
parent

remaining
RTT

transfer 1

size
parent

remaining
RTT

Figure 5.3: Simplified Simulator State Example.

Figure 5.3 shows a simplified example state of a simulator run. The solid black
arrows show relationships that are stable during a simulator run, while the blue
dashed arrows indicate relationships that change. In this case, transfer 1 has finished
and enabled transfer 2-4. The policy (omitted in the figure) has assigned transfer
2 and transfer 3 (after transfer 2 has finished) to TCP connection 1, that uses
interface 1 and transfer 4 to MPTCP connection 1. The transfer 5 is not enabled
yet as it depends on transfer 4. While the transfers progress, the outstanding bytes
and desired bandwidth fields get updated. The MPTCP connection uses subflow
objects to interface with multiple interface objects. The outstanding bytes and
desired bandwidth fields of the subflows mirror the one of the MPTCP connection.

5.5 Web Transfer Simulator Validation

To check the appropriateness of the assumptions and simplifications underlying our
simulator we use two different settings for validating the simulator: We compare
the expected timings for a set of handcrafted scenarios and the page load times of
our web crawls against the simulated timings. To cross-check the consistency of
our policy implementations, we also compare the policy implemented in our Multi-
Access Prototype, see Section 6.3.5, against the simulated policies.

69

Chapter 5 Performance Study: Web Site Delivery

5.5.1 Handcrafted Scenarios

We choose twelve different scenarios to test the basic functionality of the various
simulator policies. The core idea of the scenarios is to test various corner cases
including

• Cases those that require connection reuse or cannot benefit from it
• Traffic pattern that can specifically take advantage of either the MPTCP, EAF,

or EAF_MPTCP policy
• Cases that stress-test the simulator

For these scenarios, we manually calculate the expected page load times and check
the simulator results against them. The simulator passes all of them. Besides,
we consequently use assertions and cross checks within the simulator to be able to
identify implementation bugs impacting the results.

5.5.2 Simulator vs. Actual Web Load Times

Our validation of the actual Web load times is based on the timings in the HAR
files of the crawls. For comparing the page load times with the simulator, we only
consider the network timings and ignore other timing information, e.g., rendering,
execution time of JavaScript, …

Accordingly, we parse the HAR file, infer the inter-object dependencies, and use
these to calculate the cumulative network time of the longest chain of objects fetched
in sequence. Next, we compare for all Web pages of our workload the actual page
load time to the simulated one. Given that our crawl uses a machine with a single
interface we also use a single interface with the policy Single Interface. To determine
the interface parameters, we estimate the available bandwidth as well as the RTT to
the servers from the actual download. To estimate the available bandwidth, we use
all objects larger than a minimum size of 50 KB and their download times. Hereby,
we take into account that several of these can occur in parallel. Using the median
of the estimated bandwidth results in a typically used bandwidth of 67.13 Mbit/s
— this suggests that none of the transfers were bandwidth bound. To estimate the
RTT the simulator issues a series of pings for each Web page. The median of all
measured RTT towards that Web page is then used as an estimator for the interface
for the validation run for that Web page.

The simulator, as well as the validation, does several simplifications: The simulator
assumes that all Web objects share a single network bottleneck and that the RTT is
the same for all servers. In reality, some embedded objects of Web pages are fetched
from hosts with different network bottlenecks and RTTs. For the validation, we use
ICMP ping rather than TCP ping and the pings are not executed while the HAR
files are gathered.

70

5.5 Web Transfer Simulator Validation

−20 −10 0 10 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PD
F

Actual − simulated page load time [s]
Relative difference of page load times [%]

Figure 5.4: Simulator validation: Probability distribution of relative and absolute
difference of simulated time vs. actual page load time.

Figure 5.4 shows the absolute as well as the relative differences of the simulated vs.
the actual page load times for all Alexa Top 100 Web pages from Section 5.3. The
main mass of both distributions is around zero indicating that the simulated page
load times are very close to the actual ones. This is confirmed by the median value
which is 0.3548/1.5% for the absolute/relative differences. This highlights that the
simplifying assumptions of the simulator still enable us to approximate the actual
page load times and that we capture most intra-dependencies of the Web page.

There are some differences for some Web pages. We manually checked them and
find a majority is caused by differences in the estimated bandwidth, server delays,
and name resolution overhead. These are, e.g., related to Web back-office interac-
tions [80]. Overall, the results are rather close and show that our simulations result
in reasonable approximations of the actual Web page load time.

5.5.3 Simulator vs. Multi-Access Prototype

As part of our proxy-based evaluation in Section 6.4, we also cross-validate our
testbed results with and without our proxy. As expected, the simulator is slightly
more optimistic than the testbed results with- and without proxy. However, these
differences are consistent across scenarios and small enough to support the simulator
results. See Section 6.4.2 for an extensive discussion of the cross-validation.

71

Chapter 5 Performance Study: Web Site Delivery

5.6 Evaluation

To explore the benefits of seamlessly combining multiple paths for speeding up Web
page load time, we use our Web transfer simulator. Given the number of possible
parameters, we use a full factorial experimental design which allows us to explore
in detail the speedups that can be achieved by our policies under different network
scenarios and for various Web pages. Each factor can, in principle, influence the page
load time. For each factor, we consider multiple values that cover the possible value
ranges. By simulating all combinations, see Table 5.1, we run 9M simulations.

5.6.1 Experimental Design

In our experimental design, the primary factor is the Policy used with all of our
policies, see Section 5.2, as levels. For the MPTCP variant that uses a static interface
for the initial subflow, we always use Interface 1, as it is the lower RTT interface in
most scenarios.

The Web pages of our workloads, see Section 5.3, are the second factor: Here, the
levels are the different Web pages (with their 26 repeated crawls for Alexa Top 100
and the one crawl for the Alexa Top 1000).

The remaining four factors describe the network scenario: Interface 1 RTT and
Bandwidth as well as Interface 2 RTT and Bandwidth, according to our sim-
plified network scenario introduced in Section 5.1.3. The levels of these were chosen
to reflect typical interface characteristics: We consider mobile devices that have
WiFi as well as cellular connectivity. Interface 1 should resemble the possible char-
acteristics of home broadband connectivity (e.g., DSL or cable) and Interface 2
should resemble the range of possible 3G/LTE coverages. We do not consider costs
or restrictions of data plans in our evaluation. The resulting levels are shown in
Table 5.1.

Table 5.1: Levels of the Factorial Experimental Design.

Factor Levels

Policy: Interface 1, Interface 2,
Round Robin if1,
MPTCP if1, MPTCP rnd,
EAF,
EAF_MPTCP.

Web page: Alexa Top 100 and Top 1000.

Interface 1 RTT: 10, 20, 30, or 50 ms.
Interface 1 Bandwidth: 0.5, 2, 6, 12, 20, 50 Mbit/s.
Interface 2 RTT: 20, 50, 100, or 200 ms.
Interface 2 Bandwidth: 0.5, 5, 20, or 50 Mbit/s.

72

5.6 Evaluation

5.6.2 Benefits of Combining Multiple Paths

To explore the benefits of combining multiple paths using our policies, we compare
the speedups of the page load times against the baseline policy Interface 1. The
baseline policy Interface 1 resembles what most current mobile OSes do: Use only
WiFi and, therefore, the home broadband if available.

0.01 0.10 1.00 10.00 100.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Speedup relative to using only Interface 1 [factor]

EC
D

F

EAF
EAF_MPTCP
MPTCP if1
MPTCP rnd
Round Robin
Interface 2

Figure 5.5: ECDF of Speedups vs. Interface 1 for the Alexa Top 100 workload.

Figure 5.5 shows the Empirical Cumulative Distribution Function (ECDF) of the
speedups achieved in our simulation across all network scenarios outlined in Ta-
ble 5.1, based on the Alexa Top 100 Web pages, and categorized by the policy
used. We see that in more than 42% of the cases for EAF and 63% of the cases
for EAF_MPTCP these policies provide a speedup of more than 1. This means
that loading a Web page using these policies is faster than using Interface 1 in the
same scenario. In the remaining cases, they almost always provide a speedup of
1. This means that they neither gain nor lose from using multiple interfaces. In
these cases, the page load was not bandwidth limited and simply loading the page
over Interface 1 was the fastest option. Thus, using the other interface in addition
did not provide any speedup. Therefore EAF and EAF_MPTCP simply choose to
use Interface 1. We also see that in about 1.5% of cases EAF and EAF_MPTCP
are slower than Interface 1, which turned out to be a limitation of the simulator5.
Overall these results highlight that using EAF and EAF_MPTCP is a good choice
and improve Web page load in almost all bandwidth-bound cases.

The speedups of the MPTCP policies are very unlike: When establishing the first
subflow over Interface 1 (MPTCP if1), it shows a speedup greater than 1 in 78%
of the cases and neither improvement nor penalty in the other cases. In contrast,
if starting the first subflow for MPTCP over a randomly chosen interface (MPTCP
rnd), MPTCP performs worse than Interface 1 in 48% of the cases and can be up
to 10x slower. We take a closer look at these effects in Section 5.6.3.
5 In these cases, the simulator fetches a single huge object via the less suitable interface while the

connection limit prevents starting a new connection on the more suitable one.

73

Chapter 5 Performance Study: Web Site Delivery

The other baseline policies, Interface 2 and Round Robin, unsurprisingly show a
slowdown in about 70% of cases as in most network scenarios Interface 2 has a
much higher RTT than Interface 1.

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Speedup relative to using only Interface 1 [factor]

EC
D

F

EAF
EAF_MPTCP
MPTCP if1
MPTCP rnd
Round Robin
Interface 2

Figure 5.6: ECDF of Speedups between 1 and 5. vs. Interface 1 for the Alexa Top
100 workload.

Figure 5.6 shows the speedups between 1 and 5 from 5.5 in more detail. From our
data, we find that EAF was up to 2x faster than Interface 1 in about 23% of the
cases and from 2 to 5x faster in about 11% of the cases. We even see speedups of
more than 5x in 8.5% of the cases. EAF_MPTCP and MPTCP if1 shows negligibly
higher speedups than EAF. Overall, all three policies perform similarly and can
take significant advantage of combining multiple paths.

0.01 0.10 1.00 10.00 100.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Speedup relative to using only Interface 1 [factor]

EC
D

F

EAF
EAF_MPTCP
MPTCP if1
MPTCP rnd
Round Robin
Interface 2

Figure 5.7: ECDF of Speedups vs. Interface 1 for the Alexa Top 1000 workload.

Finally, Figure 5.7 shows the ECDF of the speedups against Interface 1 for the
Alexa 1000. These look very similar to the ones for the Alexa 100 in Figure 5.5.
This allows us to conclude that our benefits are not specific to the Alexa 100.

74

5.6 Evaluation

5.6.3 Benefits of Using the Application-Aware Policies with MPTCP

As described in Section 5.6.2, for our dataset MPTCP if1 and MPTCP rnd behave
very differently. While both show gains in the majority of the cases, MPTCP rnd
is at a disadvantage in 48% of the cases while MPTCP if1 almost never imposes a
penalty.

0.01 0.10 1.00 10.00 100.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Speedup relative to MPTCP, first subflow on Interface 1 [factor]

EC
D

F

EAF
EAF_MPTCP
MPTCP rnd
Round Robin
Interface 1
Interface 2

(a) Speedups vs. MPTCP if1

0.01 0.10 1.00 10.00 100.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Speedup relative to MPTCP, first subflow random [factor]
EC

D
F

EAF
EAF_MPTCP
MPTCP if1
Round Robin
Interface 1
Interface 2

(b) Speedups vs. MPTCP rnd
Figure 5.8: ECDF of Speedups vs. MPTCP if1/rnd for the Alexa Top 100 workload.

In Figure 5.8a, we compare the speedups of our policies for all scenarios and Web
pages against MPTCP if1. The curves for EAF and EAF_MPTCP are close to
1, which means that the page load times were similar to MPTCP in most cases
and never considerably worse. Figure 5.8a, in contrast, shows that establishing the
first subflow for MPTCP over a randomly chosen interface (MPTCP rnd) performs
worse and can be up to 10x slower than using Interface 1 and about 30x slower
than MPTCP if1. This happens because in most network scenarios Interface 1 has
a shorter RTT. As many Web page downloads in our workloads are not bandwidth
bound, MPTCP will often perform most of the download over the initial subflow.
Thus, not picking the most suitable one in almost 50% of the cases bears a consid-
erable performance penalty.

EAF_MPTCP can always choose the most suitable interface for the first subflow
and therefore improves over MPTCP if1 in cases where Interface 1 is not the most
suitable interface for the first subflow. Note, EAF shows similar performance as
MPTCP if1, but has a higher variability because it cannot adapt, i.e., re-distribute
downloads when additional downloads increase the download times predicted by the
policy.

There are also cases where EAF and EAF_MPTCP perform slightly worse than
MPTCP if1. These cases occur because EAF and EAF_MPTCP do not take future
transfers into account. Both policies cannot change their decision whether to use
MPTCP. In contrast, using MPTCP allows rebalancing traffic between subflows if
needed. Given the benefits of establishing the first subflow over the lower RTT
interface, these corner cases seem negligible to us. A policy with an application-
aware heuristic should be able to address this shortcoming.

75

Chapter 5 Performance Study: Web Site Delivery

5.6.4 Explaining Page Load Time Speedups

To understand how the factors of the scenario, i.e., bandwidth, RTT, and Web page,
effect the speedups of our EAF policy, we take a closer look at the cases when EAF
is slower, similar to, or faster than Interface 1.

In Figure 5.9 and Figure 5.10, we bin the simulation results of EAF into six cate-
gories of benefits and show how these distribute among the network and page factors
of our experimental design. Note that these categories contain different numbers of
observation, i.e., EAF is slower accounts for just 1.5% of all cases while equal to
Interface 1 account for 56.6% of all cases — see Table 5.2 for the exact percentage
of Observations within each bin of speedups.

Table 5.2: Observations within the Levels of Speedup

Level of speedup Observations

EAF slower than If1 1.46 %
EAF equal to If1 56.68 %
EAF up to 2x faster than If1 22.48 %
EAF 2-5x faster than If1 10.60 %
EAF 5-10x faster than If1 5.22 %
EAF >10x faster than If1 3.31 %

The ECDFs in Figure 5.9 shows the frequency of the speedup categories over the dif-
ferent levels of our network factors. Figure 5.9a shows the frequency of the speedup
categories over the different levels of Interface 1 bandwidths from Table 5.1. In
cases when EAF is slower or equal to Interface 1, higher values for the Interface 1
bandwidth are more prevalent, while high speedups mostly occur when the Inter-
face 1 bandwidth is low. The ECDF in Figure 5.9c shows that EAF can achieve
gains more often in cases with a moderate or high Interface 1 RTT. Opposing, as
expected, we tend to see high speedups for higher levels of Interface 2 bandwidth,
see Figure 5.9b, and for lower levels of Interface 2 RTT, see Figure 5.9d.

To explore what kind of Web pages can benefit from our EAF policy, we plot
the ECDFs of the speedup categories for different aspects of the Web pages in
Figure 5.10. High speedups occur much more frequently for large Web pages, see
Figure 5.10a. We conclude that unsurprisingly these take more advantage of using
multiple paths. For the number of objects of a Web page, see Figure 5.10c, and
the number of hosts involved in its delivery, see Figure 5.10d, we see similar results:
Higher speedups occur more frequently in cases where the Web page consists of
many objects, or where its download involves many hosts. For the median object
size in Figure 5.10b, we do not see such clear results.

Both analyses show that the EAF poly is most useful when Web page download
is bandwidth limited. Together with the results from Section 5.6.3, we can also
conclude that in cases where the RTTs of the paths differ, EAF can assure that
latency critical communications are mapped to the most appropriate path.

76

5.6 Evaluation

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interface 1 Bandwith

EC
D

F

EAF slower than If1
EAF equal to If1
EAF up to 2x faster than If1
EAF 2−5x faster than If1
EAF 5−10x faster than If1
EAF >10x faster than If1

(a) Interface 1 bandwidth
0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interface 2 Bandwith

EC
D

F

EAF slower than If1
EAF equal to If1
EAF up to 2x faster than If1
EAF 2−5x faster than If1
EAF 5−10x faster than If1
EAF >10x faster than If1

(b) Interface 2 bandwidth

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interface 1 RTT

EC
D

F

EAF slower than If1
EAF equal to If1
EAF up to 2x faster than If1
EAF 2−5x faster than If1
EAF 5−10x faster than If1
EAF >10x faster than If1

(c) Interface 1 RTT
50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interface 2 RTT

EC
D

F
EAF slower than If1
EAF equal to If1
EAF up to 2x faster than If1
EAF 2−5x faster than If1
EAF 5−10x faster than If1
EAF >10x faster than If1

(d) Interface 2 RTT
Figure 5.9: Level of speedup of the EAF policy achieved for Alexa Top 100:

Network Scenario Factors

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Total Size

EC
D

F

EAF slower than If1
EAF equal to If1
EAF up to 2x faster than If1
EAF 2−5x faster than If1
EAF 5−10x faster than If1
EAF >10x faster than If1

(a) Total Sizes
50 500 5000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Median Object Size

EC
D

F

EAF slower than If1
EAF equal to If1
EAF up to 2x faster than If1
EAF 2−5x faster than If1
EAF 5−10x faster than If1
EAF >10x faster than If1

(b) Median Object Sizes

1 2 5 10 20 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number Of Hosts

EC
D

F

EAF slower than If1
EAF equal to If1
EAF up to 2x faster than If1
EAF 2−5x faster than If1
EAF 5−10x faster than If1
EAF >10x faster than If1

(c) Number of Hosts
1 2 5 10 20 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number Of Hosts

EC
D

F

EAF slower than If1
EAF equal to If1
EAF up to 2x faster than If1
EAF 2−5x faster than If1
EAF 5−10x faster than If1
EAF >10x faster than If1

(d) Number of Objects
Figure 5.10: Level of speedup of the EAF policy achieved for Alexa Top 100:

Web Page Properties

77

Chapter 5 Performance Study: Web Site Delivery

5.7 Conclusion

In this chapter, we evaluate the potential performance benefits of combining two
paths for Web browsing using a custom Web Transfer Simulator. Our simulation
study uses a full factorial experimental design covering different policies, the Alexa
Top 100 and Top 1000 Web sites and a wide range of network characteristics as
factors The levels modeling the network characteristics are chosen to reflect typical
interface characteristics for a mobile device that has WiFi as well as cellular con-
nectivity. The policies include application-agnostic strategies — just using a single
interface, simple round-robin distribution of HTTP requests and using MPTCP—
as well as one application strategy: our EAF policy, optionally in combination with
MPTCP.

We see that the EAF policy provides a speedup in more than 42% of the cases
without using MPTCP and in 63% of the cases when using MPTCP. In about 20%
of the cases, the EAF policy provides a speedup of two or more. In the remainder of
cases, the page load is not bandwidth bound within our scenario and only benefits
from choosing the lowest latency path. We also compare our EAF policy to vanilla
MPTCP and find that, for our use cases, distributing HTTP requests on can achieve
the same performance benefits as MPTCP in most cases. By analyzing the factors
that show the highest performance gains, we conclude that overcoming bandwidth
limitations and choosing the lowest-latency path for a latency-sensitive website can
indeed improve web performance. Therefore, application awareness provided by
Socket Intents, especially the size to be received Intent used in this study, enables
choosing the right optimization criteria and reduces variability caused by optimizing
for the wrong objective.

While these results are promising, we acknowledge that the realism of this study is
limited: The assumption of knowing the size of the majority of the Web objects is
mostly realizable, e.g., by providing them as annotations or by caching them, but
requires significant efforts. The exclusion of effects caused by packet-level effects,
browser optimizations, and cross-traffic are the major limitations chosen in order to
quantify the benefits of application awareness for choosing multiple paths.

78

6
Multi-Access Prototype for BSD Sockets

As stated in Chapter 1, transport diversity is usually not exploited due to the lack
of OS support. In this chapter, we present a Multi-Access Prototype that adds
transport option selection to the BSD Socket API. We chose to extend the BSD
Socket API, as it is the template for the current networking APIs of nearly all OSes
today. In contrast to the generic transport option selection discussion in Chapter 1
to 4, our Multi-Access Prototype focuses on two dimensions of transport option
selection: path selection and endpoint selection.

We start the discussion of our Multi-Access Prototype by first revisiting the limita-
tions of using multiple access networks with vanilla BSD Sockets in Section 6.1 and
explain why the BSD Socket API is not well suited to support automated protocol
stack composition. Therefore, we are mostly excluding the problem of protocol stack
composition in this chapter. Afterwards, we derive design criteria for a BSD Socket
API OS-based support for multiple access network selection (Section 6.2).

We present our Multi-Access Prototype in Section 6.3 — it is a wrapper for the
BSD Socket API that communicates with a central Multiple Access Manager that
makes the actual decisions. The whole implementation consists of about 15k lines
of C code. It is available on Github (https://github.com/fg-inet/socket-intents/)
under BSD License.

In Section 6.4, we present an application using our Multi-Access Prototype— an
HTTP proxy. Using this proxy, we show that even a basic policy that takes advan-
tage of multiple paths can achieve significant performance benefits.

Finally, in Section 6.5, we summarize the lessons learned and point out why the BSD
Socket API is not particularly well suited to integrate transport option selection.
Stating the limitations of the BSD Socket API, we conclude that one should rethink
the programming interface for network communication and provide some outlook
how a new abstract Transport Services API [10–12] (TAPS API) overcomes these
limitations.

79

https://github.com/fg-inet/socket-intents/

Chapter 6 Multi-Access Prototype for BSD Sockets

6.1 Lecacy of the Socket API

More than thirty years ago, the BSD Socket API was designed as an IPC extension
to the filesystem API [81]. The protocol domain PF_INET was added to support
IPC using the Internet protocol family. Later on, this was complemented with the
protocol domain AF_INET6 for the current version of the Internet Protocol. While
being the default programming interface for communication on the Internet, the
BSD Socket API did not undergo substantial changes since then [81], except for
changes to name resolution1.

Applications that want to connect to a server usually have to resolve the server’s
hostname using getaddrinfo(). Then they create a socket file descriptor using
socket() passing address family, socket type, and protocol obtained from getaddrinfo().
Finally, the application calls connect() to establish the communication using the ad-
dress obtained from getaddrinfo(). In the connect() call the address obtained from
getaddrinfo() is passed back to the OS.

While this process looks quite natural, the design and implementation details of
these calls and the structures used have a strong influence on the applicability of
automatic transport option selection on top of the BSD Socket API. In the following
sections, we discuss some of the problem areas of the vanilla BSD Socket API.

6.1.1 File Descriptor vs. Transport Protocol Semantics

When using BSD Sockets, file descriptors are the abstraction for network commu-
nication. Within this abstraction, the transport protocols available get mapped
to the IPC or socket types they fit best: TCP is mapped to SOCK_STREAM, UDP
to SOCK_DGRAM. In the case of SCTP, one can choose between SOCK_STREAM and
SOCK_SEQPACKET. Depending on this choice, the usage and semantics of the socket
file descriptors change as follows.

• Sockets using SOCK_STREAM resemble Unixpipes. They represent byte streams,
implicitly guarantee reliable, in-order delivery and do not preserve message
boundaries. The operations that can be used on these sockets are read() and
write() as used on regular files.

• Sockets using SOCK_DGRAM represent association sets or associations, depending
on whether bind() was called on the socket. The operations used on these
sockets are sendmsg() and recvmsg().

• Sockets using SOCK_SEQPACKET behave like SOCK_DGRAM, but implicitly guarantee
reliable, in-order delivery. With special sctp_sendmsg() and sctp_recvmsg(),
message stream semantics are emulated.

1In the original BSD Socket API, name resolution was done by using gethostbyname(), which by
design could only support one protocol domain. It was replaced by getaddrinfo() to support
returning address family and, thus, allows applications to use dual-stack IPv4/IPv6

80

6.1 Lecacy of the Socket API

Given the above protocol to socket type mapping, these communication units do not
match the communication units derived from protocols in Section 2.4 except in case
of TCP/SOCK_STREAM. Therefore, file descriptors are an inappropriate abstraction for
automated protocol stack composition as applications have to adapt to different se-
mantics that depend on the transport protocol chosen. For each protocol, they have
to implement different semantics and adapt the communication units accordingly.

Communication units of actual applications, e.g., an HTTP request for HTTP-
based applications — the dominant protocol on the Internet [82, 83] — are typically
not aligned with the communication units provided by the BSD Socket API. In the
HTTP case, the application has to choose for each request to either open a new TCP
connection or reuse an existing one — they operate at message granularity. The
operation they have to perform on a TCP socket are at stream granularity: Opening
a new stream allows choosing among multiple interfaces using bind(). Reusing
an existing one saves 2 RTTs for the TCP handshake, a few 100 KB for the TLS
handshake (if applicable), and time spent in TCP slow-start. The adaption between
these quite different semantic is left to the application.

In conclusion, the overall system is not a unified transport API, but is merely an
artifact of squeezing networking into the Unixphilosophy of Everything is a file.
For further discussion of other file descriptor weirdness see Section 6.5.2 for issues
regarding name resolution and end of Section 6.5.3 for issues regarding asynchronous
I/O.

6.1.2 Multi-Homing and Multiple Access Networks

The availability of multiple paths in today’s Internet usually implies having multiple
interfaces at the host or multiple addresses from different IP prefixes on the same
interface. Back in the time the Internet and the BSD Socket API was designed, hosts
having multiple interfaces (multi-homed hosts) and hosts with multiple addresses
were considered a corner case [84]. Thus, Vanilla BSD Sockets do not offer reasonable
support for those “corner cases”: Applications that want to use multiple paths
usually have to apply their own heuristics to select an address and interface. To
place traffic on a specific interface, applications have to use the following hack: The
bind() socket call allows applications to override the source address of an outgoing
communication. Otherwise, the OS uses the IP address of the paths via which it
routes to the given destination as the source address. Once the source address of
the communication is selected, a system is configured with an appropriate routing
policy2, which will use the outgoing path chosen with the source address.

In practice, the application logic becomes even more difficult as obtaining the nec-
essary information often requires special privileges and the respective API differs
heavily by OS flavor. Therefore, vanilla BSD Sockets do not assist the application
in distributing traffic among multiple interfaces.
2It should route traffic with a specific source address over the interface associated with that source

address.

81

Chapter 6 Multi-Access Prototype for BSD Sockets

6.1.3 Name Resolution

Since in the original IPC context name resolution was not needed, name resolution
is not integrated with the BSD Socket API, but is provided via a support library.
The calls getaddrinfo() or its predecessor gethostbyname() are not directly linked
to a socket file descriptor as they are typically called before a socket is created.

Instead, a call to getaddrinfo() returns a linked list of sockaddr structs, where each
entry contains an ai_family (socket domain / IP version), the pair of ai_socktype

and ai_protocol (transport protocol), and a sockaddr struct containing an ad-
dress and port to connect to. Using this list, an application can implement auto-
matic endpoint selection itself. As there is no portable non-blocking variant of the
getaddrinfo() call, implementing endpoint probing mechanisms like Happy Eyeballs
as part of the application logic is rather challenging when relaying on the vanilla
BSD Socket API.

In addition, as described in Section 2.7.1, name resolution has to be performed on
a per-path basis. Neither the getaddrinfo() call nor the addrinfo struct has means
to realize the per-path separation of name resolution results as needed. Therefore,
Applications that want to do per-path name resolution cannot rely on the name
resolution library shipped with the BSD Socket API at all. They must use other
means for path aware name resolution, usually provided by an OS specific propri-
etary library or an external one shipped with the application.

82

6.2 Design Criteria for Multi-Access Prototype

6.2 Design Criteria for Multi-Access Prototype

Given the complexity of transport option selection laid out in Chapter 2 and the
limitation of the BSD Socket API, we next design a system which adds OS sup-
port for path selection and endpoint selection. Hereby, we define the term
OS to explicitly includes the kernel, the standard libraries including the socket API,
as well as the system services including the daemons of a base install. Our system
should enable applications to jointly optimize their network performance
by distributing their communication across all available paths. As a simplifica-
tion, we assume to have exactly one path per interface. As different applications
have different requirements, the system should allow them to specify their “in-
tent” for a given communication unit as a hint to the system which aspects to
optimize. Since there is not always a universally “best” interface, the system should
choose an appropriate interface for each communication unit.

As we want to evaluate rather basic policies, we use exchangeable policy mod-
ules, i.e., small pieces of code that decide which access network to use in a given
situation based on the available information, instead of our generic policy presented
in Section 4.4. For our prototype, we want the policy modules to focus on a few
parameters to quantify their particular impact. Thus, a policy needs access to
interface parameters and statistics. To enable joint optimization across ap-
plications, we need to have a single component that has knowledge about the
intents of all applications that use the Multi-Access Prototype. Moreover, the pol-
icy needs to respect the optimization of external communication partners,
i.e., it should only use DNS results for communication on the interface they were
requested through.

In cases like, e.g., HTTP, where the communication units of the application do not
align with the ones provided by the vanilla BSD Socket API, our system needs to
allow applications to specify Intents for each of the applications’ commu-
nication units or even finer granularities. If an application’s communication unit,
e.g., an HTTP request, is not aligned with the underlying transport, e.g., a TCP
stream, the former has to be assigned to the latter. For example, an HTTP-based
application typically tries to assign multiple HTTP requests to the same TCP stream
to reduce overhead. This connection reuse logic has to be implemented by each ap-
plication individually, although it is, typically, not application-specific. Therefore,
besides choosing an appropriate interface for a given communication unit, the sys-
tem must also decide whether to reuse an existing socket/connection or to
set up a new one for that communication unit and communicate this decision
to the application. The latter is essential for supporting TLS and other protocols
that need to explicitly set up a per-connection context for each new connection.
Finally, the application needs to specify if and how a socket can be reused.

To enable easy deployment and portability, our system should be compatible
with BSD Sockets and require minimal changes to applications. Moreover,
it should be possible to support other transport protocols besides TCP.

83

Chapter 6 Multi-Access Prototype for BSD Sockets

6.3 Implementation

The Multi-Access Prototype consists of two components, see Figure 6.1: An aug-
mented BSD Socket API, the Multi-Access Socket API (white), which is realized
as a shared library, and the Multi-Access Manager (MAM) (gray), that runs as a
service available to all applications on the client. This service runs in userspace and,
thus, does not require any modifications to the OS kernel.

2
3Socket API

1

4b

Kernel
4a Policy

Multi-Access
 Manager

Figure 6.1: Interactions between Network Stack and Multi-Access Manager.

When an application using our Multi-Access Socket API starts a new communi-
cation, our augmented Socket API involves the Multi-Access Manager (MAM) as
shown in Figure 6.1: First an application specifies its Intents through the API (1),
then our augmented socket library queries the policy within the MAM via Unix-
domain sockets (2). Within the MAM, a policy module decides which interface(s)
to use and which endpoints to prefer. The MAM communicates this decision back
(3), and, finally, the socket library applies the decision by selecting an interface and
providing an re-ordered endpoint list (4a/b).

The remainder of this section is structured according to the individual components of
our Multi-Access Prototype: We first describe the Multi-Access Socket API variants
in Section 6.3.1. The three different variants explore different approaches how to
integrate path and endpoint selection into the BSD Socket API. Next, we shift our
focus to the MAM and its components: We describe the overall architecture of
the MAM in Section 6.3.5. We explain how we gather per-interface characteristics
(Section 6.3.3) and how we orchestrate Multi-Path TCP [14–16] (MPTCP) from
within the MAM (Section 6.3.4). Finally, in Section 6.3.5, we describe how to
implement policy modules for our Multi-Access Prototype.

84

6.3 Implementation

6.3.1 Augmented Socket API

Our Multi-Access Socket API is implemented as a wrapper library around the BSD
Socket API. Instead of directly calling the functions of the vanilla BSD Socket API,
our wrapper first sends a requests to the MAM containing all information about
the communication, e.g., hostname to connect to, Socket Intents set. Our wrapper
library then waits for the results from the MAM and uses the vanilla BSD Socket
API to carry out the actions advised by the MAM, e.g., to bind to a specific source
address and set additional socket options.

There exist different variants of the Multi-Access Socket API. Each of these variants
fits different use cases and explores different approaches how to integrate path and
endpoint selection into the BSD Socket API:

• The classic variant, see Section 6.3.1.1, sticks as close as possible to the call
sequence of BSD Sockets, but adds an additional context parameter to all
socket calls. It is meant as a baseline to explore which aspects of automated
transport option selection can be integrated into the vanilla BSD Socket API
without changing the application logic.

• The augmented name resolution variant performs automated transport option
selection as part of the name resolution, see Section 6.3.1.2. This variant tries
to simplify the implementation without diverging too much from the vanilla
BSD Socket API. It minimizes the changes to the BSD Socket API, but adds
additional overhead to the application.

• The message granularity variant, see Section 6.3.1.3, adds support for access
selection at message granularity, e.g., to enable connection caching for HTTP.
It moves the whole connection setup into a single API call replacing the usual
call sequence of BSD Sockets.

For all variants, name resolution is offloaded to the MAM and handled by the policy
module, as the regular getaddrinfo() does not allow per-path name resolution.

6.3.1.1 Classic API Variant

Our system augments the individual calls of the BSD Sockets to take advantage of
the MAM, but leaves the general call sequence unchanged. The calls and parameters
are shown in Table 6.1. First, it adds the parameter (muacc_context) to link all
calls related to one communication unit and stores policy-related information, e.g.,
DNS replies and possible source addresses. Our muacc_context is needed to link
getaddrinfo() with all other calls3. Second, we add support for Socket Intents by
adding an INTENT socket option level for use with setsockopt().
3 All other calls could have also been linked using shadow-structures identified by the file descrip-

tors — please also see Section 6.5.4 for the limitations of this approach.

85

Chapter 6 Multi-Access Prototype for BSD Sockets

Table 6.1: Classic API Variant: Socket API with Socket Intents.

Call parameters (excerpt) in/out

muacc_getaddrinfo muacc_context_t *ctx in
const char *hostname in
const char *servname in
const struct addrinfo *hints in
struct addrinfo **res out

muacc_socket muacc_context_t *ctx in
int domain, int type in
int protocol in

muacc_setsockopt muacc_context_t *ctx in
int socket in
int level in
int option_name in
const void *option_value in
socklen_t option_len in

muacc_connect muacc_context_t *ctx in
int socket in
const struct sockaddr *address in
socklen_t address_len in

muacc_close muacc_context_t *ctx in
int socket in

The typical use of our modified BSD Socket API involves the following steps:
1. Resolve the hostname by calling muacc_getaddrinfo().
2. Creating a new socket file descriptor using muacc_socket().
3. Set Socket Intents by calling muacc_setsockopt() using the INTENT socket op-

tion level and the respective Socket Intents.
4. Call muacc_connect().

See Listing 6.1 for a minimal example.

In contrast to vanilla BSD Sockets, the client does not need to pass the address it
obtained from muacc_getaddrinfo() since this is kept in the muacc_context. Unless
the application explicitly chooses a source address (and, therefore, a source inter-
face) our augmented BSD Socket implementation consults the MAM for choosing
a suitable source and destination address. muacc_connect() automatically binds the
socket to the source address and connects the socket to the destination address.

Internally, our implementation uses vanilla BSD Socket calls to realize the commu-
nication for the application and execute the choices of the MAM. Therefore, it is
possible to extend our Multi-Access Prototype to all transport protocols that are
available via vanilla BSD Sockets. An unpublished UDP support for our Multi-
Access Prototype from the University of Aberdeen exists. The example program in
Listing 6.1 demonstrates that automated path- and endpoint selection are feasible
with this API, but features such as Happy Eyeballs are not easy to accommodate.

86

6.3 Implementation

Listing 6.1: Classic API Variant: Usage Example.
// Create and initialize a context to retain information across function

// calls

muacc_context_t ctx;

muacc_init_context(&ctx);

int socket = -1;

struct addrinfo *result = NULL;

// Set Socket Intents for this connection. Note that the "socket" is

// still invalid, but it does not yet need to exist at this time. The

// Socket Intents prototype just sets the Intent within the

// muacc_context data structure.

enum intent_category category = INTENT_BULKTRANSFER;

muacc_setsockopt(&ctx, socket, SOL_INTENTS,

INTENT_CATEGORY, &category, sizeof(enum intent_category));

int filesize = LENGTH_OF_DATA;

muacc_setsockopt(&ctx, socket, SOL_INTENTS,

INTENT_FILESIZE, &filesize, sizeof(int));

// Resolve a host name. This involves a request to the MAM, which can

// automatically choose a suitable local interface or other parameters

// for the DNS request and set other parameters, such as preferred

// address family or transport protocol.

muacc_getaddrinfo(&ctx, "example.org", NULL, NULL, &result);

// Create the socket with the address family, type, and protocol

// obtained by getaddrinfo.

socket = muacc_socket(&ctx, result->ai_family, result->ai_socktype,

result->ai_protocol);

// Connect the socket to the remote endpoint as determined by

// getaddrinfo. This involves another request to MAM, which may at this

// point, e.g., choose to bind the socket to a local IP address before

// connecting it.

muacc_connect(&ctx, socket, result->ai_addr, result->ai_addrlen);

// Perform some communication ...

// Close the socket. This de-initializes any data that was stored within

// the muacc_context.

muacc_close(&ctx, socket);

87

Chapter 6 Multi-Access Prototype for BSD Sockets

6.3.1.2 Augmented Name Resolution API Variant

This API variant moves the path selection and endpoint selection process into a
modified variant of getaddrinfo(), but leaves the general call sequence used by
the vanilla BSD Socket API in place. Compared with the Classic API (see Sec-
tion 6.3.1.1), this requires more changes to the application but also enables the
application to implement mechanisms like Happy Eyeballs.

Table 6.2 presents the only socket API call we changed for this API variant. For all
other socket API calls, we use the versions from the vanilla BSD Socket API. Socket
Intents, alongside with other socket options, are passed directly to our modified
getaddrinfo() as part of the hints parameter. To do so, we extended the addrinfo

struct, see Listing 6.2, to include a list of socket options and the source address
for the outgoing connection. We also provide a new socketopt struct to pass a list
of socket options as part of our extended addrinfo struct. The name resolution

Table 6.2: Augmented Name Resolution API Variant: Modified Socket API Calls.

Call parameters (excerpt) in/out

muacc_ai_getaddrinfo const char *hostname in
const char *servname in
const struct muacc_addrinfo *hints in
struct muacc_addrinfo **res out

Listing 6.2: Augmented Name Resolution API Variant: Modified addrinfo Struct.
/** Extended version of the standard library's struct addrinfo

* used as hint and as result parameter for muacc_ai_getaddrinfo

*/

struct muacc_addrinfo {

int ai_flags;

int ai_family;

int ai_socktype;

int ai_protocol;

/** Not included in struct addrinfo. Purpose:

* 1. Provide Socket Inetnts to the MAM / policy

* 2. Allow MAM to return recommended socket options

*/

struct socketopt *ai_sockopts;

int ai_addrlen;

struct sockaddr *ai_addr;

char *ai_canonname;

/** Not included in struct addrinfo.

* Contains the source address / path an application should bind to.

*/

int ai_bindaddrlen;

struct sockaddr *ai_bindaddr;

struct muacc_addrinfo *ai_next;

};

88

6.3 Implementation

implementation of getaddrinfo() is done by the MAM, which makes all decisions
and returns them in the result parameter as a list of endpoints ordered by policy
preference. Each endpoint is annotated with the source address the application
should bind to and socket options that should be set on the socket. Applications
use this information as parameters to the vanilla BSD Socket API calls or other
APIs. We provide helpers to set all socket options from the result data structure
on a given socket.

In Listing 6.3, we provide a minimal example of how the augmented name resolution
API variant is used. It begins with the construction of the linked socket option list
containing the Socket Intents and the construction of the hints for getaddrinfo().
For the remainder, we use the regular socket(), bind(), and connect() calls of the
vanilla BSD Socket API. This interface imposes additional complexity on the appli-
cation, but it is more flexible then the Classic API. Still, it only supports commu-
nication units that match those of the vanilla BSD Socket API.

Listing 6.3: Augmented Name Resolution API Variant: Usage example.
// Define Intents to be set

enum intent_category category = INTENT_BULKTRANSFER;

int filesize = LENGTH_OF_DATA;

struct socketopt intents = { .level = SOL_INTENTS,

.optname = INTENT_CATEGORY, .optval = &category, .next = NULL};

struct socketopt filesize_intent = { .level = SOL_INTENTS,

.optname = INTENT_FILESIZE, .optval = &filesize, .next = NULL};

intents.next = &filesize_intent;

// Perform name resolution

struct muacc_addrinfo intent_hints = { .ai_flags = 0,

.ai_family = AF_INET, .ai_socktype = SOCK_STREAM, .ai_protocol = 0,

.ai_sockopts = &intents, .ai_addr = NULL, .ai_addrlen = 0,

.ai_bindaddr = NULL, .ai_bindaddrlen = 0, .ai_next = NULL };

struct muacc_addrinfo *result = NULL;

muacc_ai_getaddrinfo("example.org", NULL, &intent_hints,

&result);

// Create the socket, bind it to the path provided by

// muacc_ai_getaddrinfo and connect it

int fd;

fd = socket(result->ai_family, result->ai_socktype,

result->ai_protocol);

bind(fd, result->ai_bindaddr, result->ai_bindaddrlen);

connect(fd, result->ai_addr, result->ai_addrlen);

// perform some communication ...

// clean up

close(fd);

muacc_ai_freeaddrinfo(result);

89

Chapter 6 Multi-Access Prototype for BSD Sockets

6.3.1.3 Message-Granularity API Variant

To support communication units at message granularity, e.g., multiple HTTP re-
quests over a single TCP stream, we move the logic for choosing which request to
send via which socket to the Multi-Access Prototype. Since there is no such func-
tionality in the vanilla BSD Socket API, we add three new calls (see Table 6.3):
socketconnect() to get a new socket or reuse an existing one, socketrelease() to
mark a socket as available for reuse, and socketclose() to close a socket and pre-
vent its reuse. This API replaces most of the vanilla BSD Socket API’s socket calls
with two new calls and eliminates the need for glue code between getaddrinfo(),
socket(), setsockopt, and connect()—code that is otherwise often duplicated.

Table 6.3: Message-Granularity API Variant: Added Socket API Calls.

Call parameters (excerpt) in/out

socketconnect int *socket in,out
const char *host in
size_t hostlen in
const char *serv in
size_t servlen in
struct socketopt *sockopts in,out
int domain in
int type in
int proto in

socketrelease int socket in
socketclose int socket in

This API variant moves functionality needed by many applications into the Multi-
Access Socket API. It is designed to support applications that use BSD Sockets in
a straightforward fashion. Bundling this control flow comes at a cost: It makes the
porting of applications that already implement optimizations such as name resolu-
tion and connection caching much harder. For example, porting the highly optimized
Firefox browser becomes near-to-infeasible. For applications that apply their own
network optimization, it is advisable to either use the augmented name resolution
API variant (Section 6.3.1.2) or directly interface with the MAM.

As our focus is on supporting simple request/response type protocols, e.g., HTTP/1.1,
we presume sequential reuse of connections by the same application. We do not sup-
port multiple concurrent requests on the same TCP connection as in HTTP/2, since
this requires support for protocol-specific message splitting within the API. Also,
we do not implement Happy Eyeballs within our socketconnect() implementation,
which will be required when moving from a prototype to a standard library.

The usage of this API variant is demonstrated in Listing 6.4: When an application
wants to send a request, it uses socketconnect() to ask our Multi-Access Prototype
for a socket for a specific host, service, and socket options (including Socket Intents)
tuple. The in/out parameter for the socket file descriptor allows to explicitly request
a new socket or reuse one of a certain set of sockets. The return value informs the

90

6.3 Implementation

Listing 6.4: Message-Granularity API Variant: Usage Example.
// Define Intents to be set later

enum intent_category category = INTENT_BULKTRANSFER;

int filesize = LENGTH_OF_DATA;

struct socketopt intents = { .level = SOL_INTENTS,

.optname = INTENT_CATEGORY, .optval = &category, .next = NULL};

struct socketopt filesize_intent = { .level = SOL_INTENTS,

.optname = INTENT_FILESIZE, .optval = &filesize, .next = NULL};

intents.next = &filesize_intent;

// Initialize a buffer of data to send later.

char buf[LENGTH_OF_DATA];

memset(&buf, 0, LENGTH_OF_DATA);

int socket = -1;

// Get a socket that is connected to the given host and service,

// with the given Intents

socketconnect(&socket, "example.org", 11, "80", 2, &intents, AF_INET,

SOCK_STREAM, 0);

// Send data to the remote host over the socket.

write(socket, &buf, LENGTH_OF_DATA);

// Close the socket and tear down the data structure kept for it

// in the library

socketclose(socket);

application whether the socket is a new one or an existing one. This allows the
application to decide if it needs to add any per-connection actions, e.g., if a new
TLS handshake has to be started for a new connection. Once the application is
done, it can either release or close the file descriptor using the second new call. The
former enables reuse; the latter does not.

The Multi-Access Socket API implementation manages a set of active sockets per
destination host/service pair. The implementation of socketconnect() checks whether
there are currently unused open sockets to the same host and port. It then checks
with the MAM if any of these existing sockets satisfy the needs of the request ac-
cording to the Socket Intents. If not, the MAM chooses an interface for a new socket
to be created. The call then either returns the chosen existing socket or the newly
opened one. The socketrelease() call marks a socket as unused.

This design implicitly prevents connection reuse across processes and, thus, ad-
dresses the most critical security concern of connection reuse. However, connection
reuse within a single process, e.g., a Web browser, can still have security and pri-
vacy implications, e.g., a disclosure of parallel browsing sessions through a timing
channel. Applications that implement multiple protection domains already have to
mitigate these kind of implications in many other contexts. As authentication in
HTTP based applications is usually done on a per-request basis, the design has no
authentication and authorization implications on these.

91

Chapter 6 Multi-Access Prototype for BSD Sockets

The actual implementation has a few additional implications for applications using
it: It makes failures on write, which are only poorly handled in many applications,
more likely, e.g., if the remote side has closed a connection that is scheduled for
reuse in the meantime. We mitigate this problem by testing the connection before
scheduling it for reuse.

Our design requires DNS caching to be an integral part of the policy module. For
this, the policy module has to guarantee that DNS replies are kept separate on a
per-interface basis and therefore should only be cached and used for communication
on the same interface from which they were acquired. This separation is necessary
to avoid interference with DNS-based server selection and load balancing as laid out
in Section 2.7.1 and [3]. While this design is optimal for destination selection, this
clashes with the architecture of today’s Web browsers that tightly integrate DNS
caching with their connection management because of its considerable performance
impact.

In conclusion, this API variant allows access selection on message granularity and is
much more comfortable to use than the vanilla BSD Socket API and the other two
variants, but it massively changes the call sequence of the socket API. It addresses
many issues of the BSD Socket API with regards to path selection and destination
selections, but do not address the principal problems with protocol stack composi-
tion.

6.3.2 The Multiple Access Manager (MAM)

The MAM is the central place for deciding which path, and, thus, which source
and destination address pair to use. It is shared by all applications of a host that
use our augmented socket interface. As shown in Figure 6.2, the MAM consists
of three components: (1) The actual policy module that implements the access
network selection strategy (see Section 6.3.5), (2) a set of data collectors that polls
various network statistics, see Section 6.3.3, and (3) the MAM Master (mamma)
itself, which handles the communication towards the Multi-Access Socket API and
provides the infrastructure for the policy module and the data collectors.

Application

Socket Intents API

Multi-Access
Socket Library

BSD Sockets Data Collectors

Policy

Multiple Access
Manager

MAM Request

MAM Response

Figure 6.2: Architecture of the MAM.

92

6.3 Implementation

The MAM is implemented using libevent. It is designed in a way that does not
need to keep any per-request state, as the requests of the Multi-Access Socket API
carry all application originated information needed for a simple policy. This avoids
complicated inter-process state management and avoids memory leaks in case an
application using the Multi-Access Socket API crashes. If the policy module needs
to keep state, it can use the context pointer provided by libevent to pass information
between callbacks or a per-prefix dictionary provided by the MAM.

socket()

connect()

Socket Library Multi Access Manager Policy

on_resolve_req()

on_connect_req()

process_mam_req()
setsockopt(SOL_INTENTS, …)

startup init()

startup

getaddrinfo()

process_mam_req()

mam_async_resolve() on_resolve_res()

read/write/…()

Figure 6.3: Interactions between Multi-Access Prototype components.

The control flow across the components of our Multi-Access Prototype is shown in
Figure 6.3: After startup, the MAM creates a list of all local interfaces and their
network prefixes, loads the policy, and initializes it. To be able to make decisions, the
policy can use various network statistics from the MAM, see Section 6.3.3, which
is stored on a per-prefix basis within the MAM. If an application requests name
resolution or connection setup from any variant of the Multi-Access Socket API, the
implementation of the Multi-Access Socket API collects all information available,
including Socket Intents, reusable sockets, and the parameters issued with the call.
This information is serialized using a simple TLV protocol and sent to the MAM
using a Unixdomain socket. The MAM de-serializes the information and calls the
respective callback of the policy module. It is the responsibility of the policy module
to compile an answer and instruct the MAM to pass the information back to the
Multi-Access Socket API. This can happen asynchronously, e.g., in case of name
resolution, and is supported by a set of helper functions provided by libevent and
the MAM.

93

Chapter 6 Multi-Access Prototype for BSD Sockets

6.3.3 Path Characteristics Data Collectors

The MAM periodically queries the OS for statistics about the current usage and
properties of the available local interfaces and stores them in per-prefix data struc-
tures. The data collectors are implemented as a component of the MAM using
callbacks that are executed periodically with a configurable update interval. Our
empirical observations suggest that an interval of 100 ms works well. When this
callback is invoked, the MAM gathers a variety of information already available
within the OS. Our current implementation gathers the values listed below. More
data about the current network performance can easily be gathered by adding code
to the MAM or the policy.

• Minimum Smoothed Round Trip Time (SRTT) of current TCP connections
using a network prefix, as an estimate for last-mile latency.

• Transmitted and received bytes per second over an interface within the last
callback period, as an estimate for current utilization.

• Smoothed transmitted and received bytes per second over an interface, as an
estimate for recent utilization.

• Maximum transmitted and received bytes per second over an interface within
the last 5 minutes, as an estimate for maximum available bandwidth.

• On 802.11 interfaces, the Received Signal Strength Indicator (RSSI) of the
last received frame on that interface, as an estimate for reception strength.

• On 802.11 interfaces, the modulation rate of the last received and the last
transmitted unicast data frame on that interface, as an estimate for the avail-
able data transmission rate on the first hop.

When a policy callback is invoked, the policy can use the most recent measurements
to guide its decisions. Note that we do not perform active measurements from within
the MAM to avoid overhead. For later versions, we plan to keep a short history of
some of the values to allow more elaborate policies.

6.3.4 Orchestrating Multipath TCP

Multi-Path TCP [14–16] (MPTCP) allows splitting TCP streams across multiple
paths. For large transfers, this can achieve almost the combined bandwidth of both
paths. Using MPTCP allows to chunk messages into smaller segments. Therefore,
it allows finer-grained bandwidth sharing than request scheduling on a per message
granularity. Thus, its functionality complements the functionality of our Multi-
Access Prototype.

Using the information given by Socket Intents, we can enable the policy mod-
ule to control the usage of MPTCP. This includes determining the set of
paths used for a particular connection/association to match the properties of a

94

6.3 Implementation

given transfer and avoids opening MPTCP subflows on already crowded interfaces
or interfaces with a high RTT. We can also combine MPTCP with our message-
granularity API from Section 6.3.1.3 and make MPTCP available via Socket
Intents. Therefore, we can choose appropriate paths for both: small communica-
tion units—which the policy can distribute at message granularity—as well as large
ones—which MPTCP can chunk and distribute. This also addresses head-of-line
blocking MPTCP can introduce for small objects.

To enable the policy module to control the usage of MPTCP we added an additional
path manager to the Linux MPTCP implementation. Our user-space MAM uses
Netlink [85] sockets to communicate with the kernel-space MPTCP path-manager. If
a policy decides to use MPTCP it selects the source address for the initial subflow.
If MPTCP is feasible, the path-manager notifies the MAM. The MAM can then
decide whether to open additional subflows and over which path(s) and therefore
instructs the MPTCP path-manager via the Netlink socket. The actual distribution
of the segments belonging to the MPTCP connection is left to the MPTCP segment
scheduler.

6.3.5 Policy Implementation

Policy modules for the MAM are implemented as shared libraries. These mod-
ules implement the callbacks presented in Table 6.4 for the different API vari-
ants. For the message-granularity API from Section 6.3.1.3, there are different
callbacks depending on whether the Multi-Access Socket API can reuse a socket
(on_socketchoose_request()) or not (on_socketconnect_request()). In any case, the
result is sent back using the functions _muacc_send_ctx_event() provided by the
MAM, which takes the updated request_context and a return code as arguments.

Table 6.4: Callbacks implemented by a Typical Policy Module

Type Callback Parameters in/out

int init mam_context_t *mctx in,out
int on_resolve_request request_context_t *rctx in,out

struct event_base *base in,out
int on_connect_request request_context_t *rctx in,out

struct event_base *base in,out
int on_socketconnect_request request_context_t *rctx in,out

struct event_base *base in,out
int on_socketchoose_request request_context_t *rctx in,out

struct event_base *base in,out
int cleanup mam_context_t *mctx in,out

95

Chapter 6 Multi-Access Prototype for BSD Sockets

Using this framework, we implemented a set of policies we describe in the remainder
of this sections. These policies do not keep track of concurrent transfers and rely on
measured network utilization and RTT. They allow to roughly predict when a file
transfer finishes. The policies implemented in the Multi-Access Prototype are the
following:

Single Interface This policy always chooses a particular, statically configured in-
terface.

Round Robin This policy uses multiple interfaces on a round robin basis.

Earliest Arrival First (EAF) This policy uses the size to be received Intent to pre-
dict the completion time for each available interface. It then chooses the one
where the communication unit will arrive first. The prediction is based on an
estimation of the interface RTT and available bandwidth. Since the most re-
cent measurement one or more downloads have been scheduled on an interface,
we reduce the available bandwidth in our calculation. Finally, we divide the
file size by the estimated available bandwidth to approximate the download
duration. We add one RTT if a connection can be reused and two RTTs if a
new connection has to be established. Finally, the interface with the shortest
predicted arrival time is chosen. We do not consider TLS handshakes.

In the next section, we use an HTTP proxy to demonstrate the benefits of the
simplified EAF policy.

96

6.4 A Web Proxy with Socket Intents

6.4 A Web Proxy with Socket Intents

To explore the benefits of path selection in practice, we implemented an HTTP proxy
that takes advantage of our Multi-Access Prototype. Our HTTP proxy consists of
2.300 lines of C code. The code specific to our Multi-Access Prototype covers only
20 lines of code.

The proxy uses the size to be received Intent, see Section 3.4, in conjunction with the
EAF policy, see Section 6.3.5. EAF computes for every object an estimate of the
load time for both paths. This estimate is based on the size to be received Intent,
the Interface RTT, bandwidth, and its usage, i.e., the currently observed traffic. It
then schedules the object over the path with the shortest predicted download time,
reusing connections if possible.

Since the proxy does not know the size of the objects in advance, we use a two-step
download process: First, the proxy issues a range request for the first m bytes to get
the initial part as well as the size of the object. Then, if the object has not already
been transferred completely, the remainder is retrieved via a second range request.
The proxy can handle various answers including the full object or the remaining
part of the object, with and without chunked-encoding.

The choice of the size of the initial request m enables a trade-off between RTT and
network bandwidth. We see good results for values between 4-8K; values that fit
within the initial TCP window of today’s Web servers.

6.4.1 Testbed Setup

To study the benefit of Socket Intents we set up a testbed, see Figure 6.4. It consists
of three physical machines: A Web server, a traffic shaper, and a client. The client
has two network paths to the Web server via two separate network interfaces. The
network characteristics are emulated by the traffic shaper and include three scenarios
which range from fully symmetric to asymmetric, see Table 6.5.

Web ServerClient Shaper
IF2

IF1

Figure 6.4: Testbed setup used in the emulation.

On the Web client, we run a Web browser along with the proxy and the MAM. Our
MAM supports the policies Single Interface, Round Robin and EAF as discussed
in Section 6.3.5. The first two policies serve as baselines. We automate a Web
browser and restart it for each measurement to ensure that the cache is cold. As the
Web browser, we use Mozilla Firefox 38.8 with the Selenium browser automation

97

Chapter 6 Multi-Access Prototype for BSD Sockets

Table 6.5: Testbed shaper: Network parameters.

Interface 1 Interface 2
RTT Down Up RTT Down Up
ms MBit/s MBit/s ms MBit/s MBit/s

Symmetric 45 10.0 1.0 45 10.0 1.0
Asymmetric 20 6.0 0.768 70 13.0 6.0
Highly Asym. 10 3.0 0.768 100 20.0 5.0

framework, Firebug 2.0.17, and NetExport 0.9b7. As we only want to look at the
influence of the access network, we use a single Web server. However, we set up
a virtual host for each hostname to restrict connection reuse appropriately. As we
want a lower bound of the performance benefits, we set the TCP parameters of the
Web server to conservative values: We use TCP/Reno with an initial congestion
window size of 10 MSS. We disable TCP metrics saving to prevent congestion win-
dow caching as well as TCP segmentation offloading to eliminate interference with
the NIC firmware and to avoid interference between our measurements. We also
choose to ignore DNS overhead, therefore, we run a DNS server serving all emulated
hostnames on the client to ensure that name resolution does not add delays.

The Web server hosts our workload. It consists of handcrafted pages, each with a
different number of objects (ranging from 2 to 128) of various sizes (between 1 KB
and 1 MB), as well as mirrored versions of several Web pages from the Web workload
we use in Chapter 5, see Section 5.3. We craft our workload to only use HTTP -
this dramatically simplifies our testbed setup and avoids interference with online
certificate checking.

6.4.2 Cross-Validation of Proxy and Simulator

In order to relate the testbed study with the simulator study in Chapter 5 and
estimate the overhead incurred by our proxy, we cross-validate both studies and
compare them against the Web page load time of our workload in the testbed without
proxy.

In Figure 6.5 we compare the simulated and the actual load times for the handcrafted
workloads of different sizes, showing the median load time and 95% confidence
intervals. The mixed workload consists of 32 objects of 1KB, 16 objects of 10 KB,
2 objects of 100 KB and 2 objects of 200 KB. Using a single interface with an
RTT of 50 ms and a bandwidth of 6 Mbit/s, see Figure 6.5a, we see slightly higher
load times on the testbed both with and without the proxy, especially for large
workloads. Using a single interface with only 0.5 Mbit/s, see Figure 6.5b, we do
not get a page load time for the workload with 32 objects of 100 KB because the
browser times out after 10-20 seconds, so we do not show it in this plot. Using our
EAF policy with symmetric shaping (50 ms and 6 Mbit/s on one interface, 50ms
and 5 Mbit/s on the other), we cannot test the case without proxy, as we cannot
use EAF without the proxy. Both our simulator and the proxy in the testbed show

98

6.4 A Web Proxy with Socket Intents

lo
ad

 ti
m

e[
s]

0

1

2

3

4

5

6

7

4*10KB 32*1KB 32*10KB 4*100KB mixed 32*100KB

Simulated
Testbed (with proxy)
Testbed (without proxy)

(a) Single Interface (50ms, 6Mbit/s)

lo
ad

 ti
m

e[
s]

0

5

10

15

20

25

4*10KB 32*1KB 32*10KB 4*100KB mixed

Simulated
Testbed (with proxy)
Testbed (without proxy)

(b) Single Interface (10ms, 0.5Mbit/s)

lo
ad

 ti
m

e[
s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4*10KB 32*1KB 32*10KB 4*100KB mixed 32*100KB

Simulated
Testbed (with proxy)

(c) EAF with symmetric shaping

Figure 6.5: Comparison of simulated load time and actual load time in the testbed
with different synthetic workloads.

99

Chapter 6 Multi-Access Prototype for BSD Sockets

speedups, see Figure 6.5c. Note the differences between the y-axes, which reflect
the speedups observed in Section 6.4.3. We get similar results for RTTs up to 200
ms and bandwidths up to 50 Mbit/s.

With regards to the testbed study, we get similar load times with and without the
proxy. This underlines that the two-step download in our proxy does not have a
considerable influence on the load time. As small objects are already downloaded
in the first step, they are not effected by the two-step split. Only larger objects are
split, but are usually bandwidth bound and therefore do not suffer much from the
additional RTT incurred by the two-step download.

Overall the simulator is more optimistic than the testbed. However, the differences
are quite small. The following observations can explain the differences between
testbed and simulator: First, the gzip transfer encoding conflicts with range re-
quests: Sometimes the server sends the whole object even though only the initial
part is requested. Moreover, disabling compression for the initial request is not fea-
sible as it eliminates compression also for the second request since the content-range
refers to the range after compression. Second, the simulator presumes that all inde-
pendent transfers start immediately, which is not always the case in practice. This
can skew timings, in particular for small workloads. These effects are independent of
the use of our Prototype. Therefore, we can use the simulator to conduct a relative
comparison between scenarios with and without Socket Intents with the limitations
discussed in Section 5.1.

6.4.3 Socket Intent Benefits in the Testbed

Based on the testbed setup from 6.4.1, we evaluate the benefits of the EAF policy
by comparing it against the single interface policy – i.e., Interface 1, Interface 2.
See Section 6.3.5 for a description of the policies. For each of them, we download
selected web pages and synthetic workloads 7 times. We compute the load time of the
individual objects and aggregate the times during which objects were downloaded
to compute the total page load time4. The resulting page load times are shown
in Figure 6.6 using a logarithmic y-axis. It includes all three policies: Interface 1,
Interface 2, and EAF. The mixed handcrafted workload shown here consists of 16
objects of 1KB, 8 objects of 10KB, and 4 objects of 100KB. The selected Web
pages were chosen from a set of web pages we could adapt for the testbed. We
were not able to adapt a representative set of Web pages for the reasons laid out
in Section 5.1.2.

We see that Interface 1 is the better choice if the Web objects are small and the
network scenario is asymmetric. Interface 2 is the better choice if the objects are
larger or if there are more objects. Using both interfaces is, in particular, beneficial
for the symmetric scenario. While there is still a benefit of using both interfaces it
gets smaller for more asymmetric scenarios.
4The total display time includes page rendering and client-side JavaScript computation, which we

exclude here.

100

6.4 A Web Proxy with Socket Intents

Symmetric scenario

0.5

1.0

2.0

5.0

10.0 Use Only Interface 1
Use Only Interface 2
Earliest Arrival First

Asymmetric scenario

0.5

1.0

2.0

5.0

10.0

M
ed

ia
n

pa
ge

 lo
ad

 ti
m

e
[s

]

Highly asymmetric scenario

0.5
1.0
2.0

5.0
10.0

aliexpress.com amazon.com 32*100KB 32*10KB mixed
Figure 6.6: Proxy: Page load times.

The EAF policy takes advantage of the multiple access networks seamlessly. It
either uses both interfaces or the better one of the two with only a slight increase
in page load time variability. For the handcrafted workload of 32 objects of 100
KB, our EAF policy outperforms the better of the two interfaces with speedups
from 25% to 50%. For some of the actual Web pages that we mirror on our testbed,
including amazon.com, we get speedups in the range of 20–45%. For other Web pages
such as aliexpress.com, we only get a speedup of up to 10%.

The reason for the “decreased” benefits compared to the handcrafted pages are that
the mirrored Web pages fetch content from different servers, which limits connection
reuse. Furthermore, even for mirrored versions of the same Web page, load times
vary based on optimizations in the contained JavaScripts, as the Alexa 100 pages
are heavily optimized.

Nevertheless, our results highlight the potential of informed transport option selec-
tion: Even with a proxy, the page load times improve. Including transport option
selection within the browser rather than a proxy is likely to yield even better per-
formance.

101

amazon.com
aliexpress.com

Chapter 6 Multi-Access Prototype for BSD Sockets

6.5 Lessons Learned

While designing and implementing the different parts of the Multi-Access Prototype,
as described in this thesis, we faced several challenges. Some of them turned out
to be actual limitations of the BSD Socket API, on which we focus in the following
sections.

6.5.1 Platform Dependent APIs

In the MAM, we discover the currently available paths as well as performance statis-
tics about these paths. As we intended to run our Multi-Access Prototype on Linux
and MacOS X, we had to deal with many platform-specific details of the Socket
API. Enumerating network interfaces and their addresses were one of the few things
we could implement in a portable way.

The most challenging portability issue for the Multi-Access Prototype is the gather-
ing of performance data and network statistics. There is no standardized or common
API to get data like packet counters or TCP timings. On Linux, most statistics can
be accessed using the Netlink [85] interface. The exact calls and details are barely
documented, but it works for most statistics. Getting access to similar statistics on
MacOS X turned out to be even more challenging. This problem finally convinced
us to drop full MacOS X support. We only support policies that rely on statistics
on Linux.

Another portability issues we had to solve is the inconsistent definition of the
sockaddr_in and sockaddr_in6 structs on both platforms. It is the result of a histor-
ical disagreement whether a socket address should have a member stating its length.
Having such a member makes opaque handling of socket addresses without know-
ing their type possible, omitting it saves a byte of memory. Today, this historical
disagreement still manifests in increased code complexity and the use of #ifdefs.

6.5.2 The Missing Link to Name Resolution

For many aspects of transport option selection, e.g., name resolution, it is crucial to
have information, such as Socket Intents or other socket options, available as early as
possible. The primary problem for integration path selection and endpoint selection
with the BSD Socket API is the order of the function calls that are involved in
name resolution, destination selection, protocol, and path selection, and how they
are linked.

In the vanilla BSD Socket API, most functions take a socket file descriptor as an
argument. Thus it is possible to link different function calls to the same communi-
cation. However, getaddrinfo() is not linked to a socket file descriptor but is needed
for destination selection. At this point, it is not yet possible to set a socket option
including Socket Intents, because the socket does not exist yet.

102

6.5 Lessons Learned

Our three API variants described in Section 6.3.1 work around this problem in
different ways:

• The augmented name resolution variant in Section 6.3.1.2 places the whole
automation of transport option selection into the getaddrinfo() function. The
results are returned in an extended addrinfo struct and have to be applied
manually by the application, including binding to a source address representing
the selected path and applying all socket options provided in a list, for each
connection attempt.

• The classic variant in Section 6.3.1.1 adds a context to all socket- and name
resolution-related API calls and delays the actual name resolution until mucaa_connect()
is called.

• The message granularity variant in Section 6.3.1.3 puts all functionality into
one call.

All of these approaches add the missing link between name resolution and the other
parts of the API but add a lot of state keeping — either to the application or to the
Socket Intents library.

6.5.3 Asynchronous I/O

Network I/O is asynchronous. Yet, the original filesystem abstractions were syn-
chronous, i.e., blocking. As asynchronous I/O was only added later on to the
Unixfilesystem API, it is hard to use. There are at least four different asynchronous
I/O APIs variants, namely select(), poll(), epoll(), and kqueue(), whereby most
OS implements at least two of them.

To implement asynchronous I/O in our Socket Intents prototype, we wrapped one of
the asynchronous I/O APIs that is available on most platforms: select(). To make
Socket Intents accessible to more applications and on more platforms, a production-
grade system needs to wrap all asynchronous I/O APIs and implement most of
the socket creation logic, path selection and connection logic within these wrap-
pers. Mixing asynchronous I/O with the different multithreading approaches is
challenging and error-prone and may lead to unintuitive behavior, e.g., calling our
prototype’s select() from different threads could lead to anything from deadlocks to
busy waiting.

Another issue is that we use Unixdomain sockets to communicate between our Mul-
tiple Access Manager and the Socket Intents API library called by the application.
So we need to make sure that the application does not block while communicating
with the Multiple Access Manager.

Also, the problems arising from using file descriptors get worse when realizing asyn-
chronous I/O: If a Socket API call should return immediately, it needs to provide
the application with a reference to a flow that has not yet been fully set up, i.e., a
reference to a socket future. An implementation of such an asynchronous API has

103

Chapter 6 Multi-Access Prototype for BSD Sockets

to return an unconnected socket file descriptor, on which the application then calls,
e.g., select(), and starts using it once it becomes readable and writable. If the des-
tination, path, and transport protocol have not been chosen yet at this point, the file
descriptor returned by the implementation might not yet have the final address fam-
ily and transport protocol. When the implementation later creates the final socket
of the right type, it can re-bind it to the file-id of the originally returned file de-
scriptor using dup2(). This procedure can easily lead to time-of-check / time-of-use
confusion. To make things even worse, the application can copy the file descriptor
future using dup(), which is rarely useful for sockets, but in combination with file
descriptors used as future, it leads to unexpected behavior. Some of these issues
could be eliminated if the transport option selection is moved into the kernel and
implemented within the file descriptor backend itself, but the resulting API would
still render some un-intuitive corner cases.

6.5.4 Here Be Dragons hiding in Shadow Structures

The API variants described in Section 6.3.1.3 and Section 6.3.1.1 need to keep a
lot of state in shadow structures as this information cannot be passed between the
Socket API calls otherwise. This state needs to be cleaned up when the last copy of
the file descriptor is closed or the last socket held for reuse has timed out. Besides,
access to these shadow structures has to be thread-safe.

Implementing both API variants has turned out to be extremely error-prone and has
led of unspecified behavior in the system library and requires platform-dependent
extensions. These results indicate that an implementation of transport option se-
lection that nicely integrates with BSD Sockets may come with lots of limitations
and may also not be portable across POSIX-compliant operating systems.

6.5.5 Changing Applications to Use Better APIs is Hard

Changing APIs used by existing applications is hard. This is especially true for
the BSD Socket API, as it provides a bunch of API calls that gradually change the
state of a file descriptor. As this logic is complex and sometimes needs to be used in
different parts of the program, it is often wrapped in custom helpers. In applications
implementing connection reuse, this results in quite complex structures and control
flows which are heavily interwound with the BSD Socket API.

A student, exploring how an MPEG DASH [62] player, the GPAC multimedia player,
could be augmented to make use of our Message-Granularity API Variant [86], en-
countered difficulties in how to transfer part of the application’s socket handling
to our Multi-Access Prototype. Our API required more state handling, and by
changing the socket on a per transfer basis, the new code violated some hidden
assumptions in the network code of GPAC, which needed more code changes than
anticipated to integrate our Message-Granularity API. As GPAC uses no paralleliza-
tion, the performance benefits where reasonable small.

104

6.6 Conclusion and Outlook

6.6 Conclusion and Outlook

With our Multi-Access Prototype, we show that it is feasible to do automated path
selection and destination selection based on the information provided by Socket
Intents. However, the resulting system also unveils the limitations of the BSD
Socket API. These limitations include the loose integration of name resolution in
the overall API and the philosophy of Everything is a file that only fits reliable
byte stream transports well. For all other transport semantics, the BSD Socket API
exposes many corner cases and semantic inconsistencies to the application. Overall,
this renders the BSD Socket API unfit for protocol stack composition, but still
enables path selection and destination selection. However, even with only doing
path selection, we can already achieve significant performance benefits.

Our API variants allow overcoming the loose name resolution integration. Still, they
are workarounds that change the semantics of the BSD Socket API. After building
this prototype, we conclude that the vanilla BSD Socket API is not well suited to
exploit transport diversity in an easy and portable way and should be considered
broken. Therefore, we believe it is time to rethink the programming interface for
network communication and to replace the BSD Socket API with an event-based API
that supports different communication unit granularities and transport semantics.

The Transport Services API [10–12] (TAPS API) we are designing within IETF
Taps Working group solves most of the problems we encountered when adding
transport option selection to the BSD Socket API. By being strictly event-based,
asynchronous I/O can be realized cleanly without undesired side effects. The TAPS
API is designed to integrate Happy Eyeballs as well as protocol and path selection
based on the preferences and requirements provided by the application. It uses
messages as base communication unit granularity and therefore can implement mes-
sage de-multiplexing for protocols like HTTP/2 gracefully. To support stream-based
communication protocols like TCP, the TAPS API supports providing application
protocol-specific framers to split a byte stream into individual messages. Unlike
our Multi-Access Prototype, it does not support automated connection reuse using
implicit connection pools – still, this feature can be gracefully implemented as an
extension.

105

7
Conclusion

Transport option selection within an Internet end host is challenging. This thesis
highlights three aspects — characterizing transport diversity, how to enable trans-
port option selection within the operating system, and the performance benefits of
exploiting the transport diversity by, e.g., using multiple paths. In this chapter, we
summarize the findings of this thesis, give an outlook on future research, and draw
an overall conclusion.

7.1 Summary

The initial part of the thesis characterizes the transport diversity provided by today’s
Internet. In Chapter 2, we provide a comprehensive analysis of the three dimensions
of transport diversity — path selection, endpoint selection, and protocol stack com-
position. Each dimension contributes to the set of transport options an application
can, in principle, choose from. By focusing on semantic communication units rather
than Protocol Data Units (PDUs), we analyze on which communication granularity
optimizations can be applied. Next, we identify a set of building blocks that are
used to compose transport services provided by Internet protocols — our transport
mechanisms. By combining the perspectives of communication units and transport
mechanisms, we can reason about protocol stack compositions and the tradeoffs of
choosing among them. Based on this characterization, we use communication units
and mechanisms to analyze a representative set of Internet protocols. Our analysis
highlights three aspects: a) which protocol combinations can be used to compose a
protocol stack for a given communication need, b) which functionality is provided by
that protocol stack composition, and c) at which granularity of communication the
protocols can operate and be tuned for the applications’ needs. We find a diverse set
of protocols that provide transport options at almost all granularities. Despite that,
most applications on today’s Internet use TCP as a result of designing protocols
into the most easily usable ecosystem. From a communication unit perspective, this
often means forcing message granularity communication into a stream abstraction
and, thus, preventing further optimizations. This underlines the need for operating
system (OS) based transport option selection to enable applications to seamlessly
take advantage of the protocol diversity in the Internet.

107

Chapter 7 Conclusion

The next chapters of the thesis focus on the building blocks needed to realize trans-
port option selection within the OS. In Chapter 3, we introduce the concept of
Socket Intents. Socket Intents allow applications to share their knowledge about
their communication pattern and express performance preferences in a generic and
portable way. Therefore, they enable the OS to take the applications’ intents into
account, thus, enabling us to move transport option selection from the application
into the OS. We describe Socket Intents in the version we tried to standardize in
the IETF [6] and provide comprehensive examples of how Socket Intents are used.
In Chapter 4, we present a generic policy framework for realizing transport option
selection within the OS. It collects the possible paths, endpoints, and protocol stack
compositions together with the Socket Intents provided by the application and uses
as input to the policy. The policy itself is composed from policy entries that can be
provided by different stakeholders. As some of this information needs to be acquired
on-the-fly, e.g., using name resolution, the policy is evaluated while its inputs are
still being acquired. The best-ranked transport configurations then compete in a
connection-establishment race — Happy Eyeballs on Steroids — to select the best
transport configuration.

In Chapter 5, we evaluate benefits of using multiple paths to improve Web browsing
performance. We use a custom Web Transfer Simulator to simulate the Web page
load using different policies. These policies include just using a single interface,
simple round-robin distribution of HTTP requests, using MPTCP and our EAF
policy, optionally in combination with MPTCP. Our simulation study uses a full
factorial experimental design covering the Alexa Top 100 and Top 1000 Web sites
for a wide range of network characteristics, and thus, resulting in 9M simulations.
We see that our EAF policy provides a speedup in more than 42% without using
MPTCP and in 63% of the cases when using MPTCP. In about 20% of the cases, our
EAF policy provide a speedup of two or more. In the remainder of cases, the page
load is not bandwidth bound within our scenario and only benefits from choosing
the lowest latency path. We also compare our EAF policy to vanilla MPTCP and
find that, for our use cases, distributing HTTP requests on can achieve the same
performance benefits as MPTCP in most cases. By looking at the factors that show
the highest performance gains, we conclude that for this use case, the gains are
most prevalent in cases where we can use multiple paths to overcome bandwidth
limitations or choose the lowest-latency path for latency-sensitive transfers.

Finally, in Chapter 6, we evaluate the implementability of transport option selection
as an extension to the BSD Socket API by building a prototype. Our Multi-Access
Prototype augments the BSD Socket API and implements three different approaches
how to integrate transport option selection as API variants. On the one hand, it
shows that it is possible to integrate path selection and endpoint selection into
the BSD Socket API. However, on the other hand, integrating the third dimension
— protocol stack composition — is shown infeasible due to the structure of the
BSD Socket API. Our Multi-Access Prototype also unveils many side effects of the
BSD Socket API design that limit the effectiveness of transport option selection as
part of the BSD Socket API. For supporting transport option selection at message
granularity, the augmented API diverges heavily from the regular usage pattern of

108

7.2 Lessons Learned

the BSD Socket API. After building this prototype, we conclude that the vanilla
BSD Socket API is not suited to exploit transport diversity and should be considered
broken beyond repair. Therefore, we believe that we urgently need to rethink the
programming interface for network communication and replace the BSD Socket API
with an event-based API that supports different communication unit granularities
and transport semantics.

7.2 Lessons Learned

Transport option selection is complex – complex to systematize, complex to imple-
ment and complex to evaluate. This complexity mainly stems from the externalities
we have to consider.

The first example of such externalities is the layered design of the Internet. While
at the time the “End-to-end Arguments in System Design” [20] was written, it was
hoped that such a design should allow exchanging the protocols at each layer, the re-
liance on specific protocol behavior and the lack of clearly specified interfaces renders
protocol stack composition impossible in today’s implementations. In Chapter 2,
we give an overview of the design space based on the definition of the protocols, but
ignore externalities in the implementations. To realize protocol stack composition
in practice, we indeed have to re-implement a lot of software to eliminate a lot of
implicit assumptions and have to replace the whole networking API largely used
based on them. Therefore, we had to refrain from realizing protocol stack compo-
sition in our Multi-Access Prototype. While the IETF is currently trying hard to
find, document, and work around such externalities in maintenance and extensions
of existing protocols, they try to minimize them in the next generation transport
protocols like QUIC [17–19] and enforce clean interfaces. The same may be nec-
essary for a replacement of the BSD Socket API in order to realize protocol stack
composition in the way we outline in Chapter 2 and 4.

An example of the number of externalities involved in transport option selection
is provided by the implementation of our Multi-Access Prototype, which took the
biggest effort of this thesis. To demonstrate the feasibility of transport option se-
lection, we extend the BSD Socket API. While we discuss this in more detail in
Section 6.5, we want to acknowledge this here as an example of the trade-off be-
tween practical applicability, and the amount of effort to answer a research question:
The implementation as an extension of the BSD Socket API is a good argument for
the practical applicability, but the external constraints of this choice account for
most of the effort needed to show the feasibility of transport option selection within
the OS.

Finally, the use-case we chose for our performance evaluation is a prime example
of stacking externalities. Web performance is depending on many factors, including
the Web site content, embedded JavaScripts, Web browser implementation, object
caching, DNS caching, the network stack, the paths used, congestion control algo-
rithms used, network conditions, CDN interactions, and the server implementation.

109

Chapter 7 Conclusion

In a real-world study, most of these factors change over time or on a per-request
basis. To get reasonable results for the one factor we wanted to change — the path
— we chose two approaches: Simulating the download of the objects of the Web site
(see Chapter 5) and using a custom proxy while emulating network conditions in a
testbed (see Section 6.4). Both approaches have weaknesses: While the simulator
approach lacks realism by ignoring all externalities, the testbed study only provided
results for a few Web sites of the Alexa Top 100. The Web sites did not load as
anticipated because of externalities, e.g., advertisements loaded based on external
recommendation services or objects loaded from non-deterministic Java Scrips. We
could not get this study approach to a reasonable size dataset as debugging and
somehow fixing these problems requires manual intervention. The complex set of
externalities and the resulting complex problems make Web performance a pretty
bad use case for showing something actually works.

7.3 Future Work

This thesis provides a foundation of automated multi-path aware transport option
selection within the OS. However, there are several aspects in transport option
selection that need further work.

The first area of research arises alongside the definition of a policy: While our gener-
alized policy framework allows expressing which transport options to prefer based on
a variety of conditions, it does not answer the question when transport options are
preferable. To approach this question, one has to answer which metrics are useful as
input to transport option selection, what measures based on these metrics are most
beneficial to decide upon, and how to combine multiple optimization objectives.

In extension to that, policies might not only want to balance multiple objectives of
a single communication unit, but tackle conflicting objectives of multiple communi-
cations by multiple applications. While TCP fairness and Quality of Service (QoS)
queueing schemes are already balancing conflicts regarding bandwidth and delay,
what other cross-application tradeoffs need to be addressed? An example of such
a tradeoff we imagine is adjusting the packet loss probability across different kinds
of messages, e.g., using policy controlled packet pacing. What additional benefits
can be achieved by automatically tuning transport protocols for the overall traffic
situations?

A different set of challenges arises with regards to implementing our generalized
policy framework. Some of them are engineering challenges, e.g., how to represent
policy entries and what are good weights to assign Other challenges relate to com-
putation complexity and whether it is possible to represent policy entries in a non
Turing-complete way to address runtime and security concerns.

110

7.4 Outlook

In the area of Socket Intents, we see open questions with regards to the individual
Socket Intents Types: Which Socket Intent Types are useful? How to evaluate
usefulness independently of a specific policy? Which Socket Intent Types will be
adopted by developers? The feedback from bringing this work to the ITEF affirmed
our belief that these are the key questions that will decide about the deployment of
Socket Intents.

Another future challenge relates to the limitations of the BSD Socket API we en-
countered in Chapter 6: Which primitives should a future Socket API provide to
enable transport option selection at all granularities of communication? How should
this API handle cases where the outcome of transport option selection can only pro-
vide transport configurations with a different granularity than requested, i.e., if the
system has to fall back from message-granularity to stream-granularity provided by
TCP? After bringing our work to the IETF, we joined efforts with other researchers
and industry people to design a next-generation Transport Services API [10–12],
which is already being implemented by the Apple networking team [87].

Finally, a transport option selection framework does not have to be limited to the
end-host, but may have direct interactions with the network. There are already
approaches to share network information with the end-host [88, 89] and ideas how
software-defined networks can interact with end-host policies [67], but these show
no significant deployment yet. While we consider application awareness at the core
of the Internet infeasible for various reasons, information provided by Socket Intents
and decisions of a local transport option selection policy can provide valuable input
to adaptive access technologies like cognitive radios.

7.4 Outlook

When looking at the Internet in 30 years, what do we expect? In our vision, au-
tomated transport option selection within the OS is a standard functionality of
any end-host, that is not extremely resource constrained. Most applications use
Socket Intents to make the OS aware of their communication preferences and antici-
pated communication pattern. With this kind of automation, a variety of transport
protocols optimized for different communication needs is not only available, but
actively used. New protocols can be deployed easily because Happy Eyeballs on
Steroids (HEoS) is used for every communication setup and automatically falls back
to proven protocols with a delay of a few milliseconds when the new protocol is not
available for a specific endpoint.

To make this vision come true, we have to get rid of legacy BSD Sockets. They are,
from our perspective, the main obstacle for automated transport option selection.
We ought to replace it with something like the TAPS API. This evolution requires
much work within the IETF and other standard bodies and might take as long as
the migration from IPv4 to IPv6, but is in our opinion worth the afford.

111

Glossary

ANDSF access network discovery and selection function.

APN Access Point Name (in cellular networks).

AQM Active Queue Management [57].

BANANA-box An on-path device that is able to split flows across
multiple access networks to aggregate bandwidth.
The IETF working group “BANdwidth Aggrega-
tion for interNet Access” (BANANA) is currently
in progress of standardizing such a solution.

CDN content delivery network.

CPE customer premise equipment.

DCCP Datagram Congestion Control Protocol.

DiffServ Differentiated Services.

DSCP Differentiated Services Code Point [63, 64].

EAF Earliest Arrival First.

ECDF Empirical Cumulative Distribution Function.

ECMP Equal Cost Multi-Path Routing [43].

ECN Explicit Congestion Notification [56].

FEC Forward Error Correction.

future A surrogate value returned in place of the actual
result of an asynchronous operation.

Happy Eyeballs An IPv6 transition technology that starts connec-
tion via IPv4 and IPv6 in parallel and using the
first connection, but biases the “connection racing”
by giving IPv6 a few ms advantage [49].

HAR HTTP Archive.

HEoS Happy Eyeballs on Steroids.

HTTP Hypertext Transfer Protocol.

113

Glossary

IFOM IP flow mobility for Proxy Mobile IPv6 [29].

IMS IP Multimedia Subsystem.

IntServ Integrated Services.

IPC inter process communication.

IPSec Internet Protocol Security [28].

MAM Multi-Access Manager.

MPTCP Multi-Path TCP [14–16].

NEMO Flow Bindings in Mobile IPv6 and Network Mobil-
ity [27].

OS operating system.

PDU Protocol Data Unit.

protocol stack composition The process of choosing a set of protocols for a given
communication unit.

PvD Provisioning Domain [30].

QoS Quality of Service.

QUIC A UDP-Based Multiplexed and Secure Transport [17–
19].

RTT round-trip time.

SCTP Stream Control Transmission Protocol [90].

SIP Session Initialization Protocol [91].

SLAAC IPv6 Stateless Address Autoconfiguration [32].

TAPS API Transport Services API [10–12].

TCP Transmission Control Protocol [92].

transport configuration A set of transport options enabling communication
between two endpoints.

transport option A means to transport data, e.g., in the Internet.
Technically, this can be an endpoint, a path or a
protocol available.

114

Glossary

UDP User Datagram Protocol [93].

WAN Wide Area Network.

115

Bibliography

[1] Philipp S. Schmidt, Theresa Enghardt, Ramin Khalili, and Anja Feldmann.
“Socket Intents: Leveraging Application Awareness for Multi-access Connec-
tivity”. In: ACM CoNEXT. Santa Barbara, California, USA: ACM, 2013,
pp. 295–300. isbn: 978-1-4503-2101-3. doi: 10.1145/2535372.2535405 (cit.
on pp. vii, 39, 46).

[2] Philipp S. Schmidt, Ruben Merz, and Anja Feldmann. “A first look at multi-
access connectivity for mobile networking”. In: Proceedings of the 2012 ACM
workshop on Capacity sharing. CSWS ’12. Nice, France: ACM, 2012, pp. 9–14.
isbn: 978-1-4503-1780-1. doi: 10.1145/2413219.2413224 (cit. on p. vii).

[3] Philipp S. Tiesel, Bernd May, and Anja Feldmann. “Multi-Homed on a Sin-
gle Link: Using Multiple IPv6 Access Networks”. In: Proceedings of the 2016
Applied Networking Research Workshop. ANRW ’16. Berlin, Germany: ACM,
2016, pp. 16–18. isbn: 978-1-4503-4443-2. doi: 10.1145/2959424.2959434 (cit.
on pp. vii, 19, 92).

[4] Philipp S. Tiesel, Theresa Enghardt, Mirko Palmer, and Anja Feldmann.
Socket Intents: OS Support for Using Multiple Access Networks and its Bene-
fits for Web Browsing. Submitted to ACM/IEEE Transactions on Networking,
initial version (June 2017) accepted with major revision, revised version (Apr.
2018) rejected. Apr. 2018. arXiv: 1804.08484 (cit. on p. vii).

[5] Philipp Tiesel, Theresa Enghardt, and Anja Feldmann. Communication Units
Granularity Considerations for Multi-Path Aware Transport Selection. Internet-
Draft draft-tiesel-taps-communitgrany-01. IETF Secretariat, Oct. 2017. url:
http://www.ietf.org/internet-drafts/draft-tiesel-taps-communitgrany-

01.txt (cit. on p. viii).
[6] Philipp Tiesel, Theresa Enghardt, and Anja Feldmann. Socket Intents. Internet-

Draft draft-tiesel-taps-socketintents-01. IETF Secretariat, Oct. 2017. url: http:
//www.ietf.org/internet-drafts/draft-tiesel-taps-socketintents-01.txt

(cit. on pp. viii, 39, 42, 108).
[7] Philipp Tiesel and Theresa Enghardt. A Socket Intents Prototype for the BSD

Socket API - Experiences, Lessons Learned and Considerations. Internet-Draft
draft-tiesel-taps-socketintents-bsdsockets-01. IETF Secretariat, Mar. 2018. url:
https : / / www . ietf . org / archive / id / draft - tiesel - taps - socketintents -

bsdsockets-01.txt (cit. on p. viii).
[8] Mirko Palmer. “Implementation and Evaluation of Multi-Access Policies for

MPTCP Path Management in User-Space”. MA thesis. TU Berlin, June 2015
(cit. on p. viii).

[9] Tobias Kaiser. “Enabling Asynchronous I/O for the Socket Intent Framework”.
BA thesis. TU Berlin, June 2016 (cit. on p. viii).

117

https://doi.org/10.1145/2535372.2535405
https://doi.org/10.1145/2413219.2413224
https://doi.org/10.1145/2959424.2959434
https://arxiv.org/abs/1804.08484
http://www.ietf.org/internet-drafts/draft-tiesel-taps-communitgrany-01.txt
http://www.ietf.org/internet-drafts/draft-tiesel-taps-communitgrany-01.txt
http://www.ietf.org/internet-drafts/draft-tiesel-taps-socketintents-01.txt
http://www.ietf.org/internet-drafts/draft-tiesel-taps-socketintents-01.txt
https://www.ietf.org/archive/id/draft-tiesel-taps-socketintents-bsdsockets-01.txt
https://www.ietf.org/archive/id/draft-tiesel-taps-socketintents-bsdsockets-01.txt

Bibliography

[10] Tommy Pauly, Brian Trammell, Anna Brunstrom, Gorry Fairhurst, Colin
Perkins, Philipp Tiesel, and Christopher Wood. An Architecture for Trans-
port Services. Internet-Draft draft-ietf-taps-arch-02. IETF Secretariat, Oct.
2018. url: https://www.ietf.org/archive/id/draft-ietf-taps-arch-02.txt
(cit. on pp. ix, 79, 105, 111, 114).

[11] Brian Trammell, Michael Welzl, Theresa Enghardt, Gorry Fairhurst, Mirja
Kuehlewind, Colin Perkins, Philipp Tiesel, and Christopher Wood. An Ab-
stract Application Layer Interface to Transport Services. Internet-Draft draft-
ietf-taps-interface-02. IETF Secretariat, Oct. 2018. url: https://www.ietf.

org/archive/id/draft-ietf-taps-interface-02.txt (cit. on pp. ix, 39, 41, 79,
105, 111, 114).

[12] Anna Brunstrom, Tommy Pauly, Theresa Enghardt, Karl-Johan Grinnemo,
Tom Jones, Philipp Tiesel, Colin Perkins, and Michael Welzl. Implementing
Interfaces to Transport Services. Internet-Draft draft-ietf-taps-impl-02. IETF
Secretariat, Oct. 2018. url: https://www.ietf.org/archive/id/draft-ietf-
taps-impl-02.txt (cit. on pp. ix, 58, 79, 105, 111, 114).

[13] Apple Inc. About Wi-Fi Assist. 2016. url: https://support.apple.com/en-

us/HT205296 (visited on 09/27/2017) (cit. on p. 2).
[14] A. Ford et al. Architectural Guidelines for Multipath TCP Development. RFC

6182 (Informational). Mar. 2011. url: http://www.ietf.org/rfc/rfc6182.txt
(cit. on pp. 2, 84, 94, 114).

[15] Christoph Paasch and Olivier Bonaventure. “Multipath TCP”. In: Queue 12.2
(Feb. 2014), 40:40–40:51. issn: 1542-7730. doi: 10.1145/2578508.2591369 (cit.
on pp. 2, 84, 94, 114).

[16] Olivier Bonaventure and S Seo. “Multipath TCP deployments”. In: IETF Jour-
nal 12.2 (2016), pp. 24–27 (cit. on pp. 2, 84, 94, 114).

[17] Janardhan Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed
and Secure Transport. Internet-Draft draft-ietf-quic-transport-07. IETF Sec-
retariat, Oct. 2017. url: http://www.ietf.org/archive/id/draft-ietf-quic-
transport-07.txt (cit. on pp. 7, 109, 114).

[18] Janardhan Iyengar and Ian Swett. QUIC Loss Detection and Congestion Con-
trol. Internet-Draft draft-ietf-quic-recovery-07. IETF Secretariat, Nov. 2017.
url: http://www.ietf.org/archive/id/draft-ietf-quic-recovery-07.txt

(cit. on pp. 7, 109, 114).
[19] Martin Thomson and Sean Turner. Using Transport Layer Security (TLS)

to Secure QUIC. Internet-Draft draft-ietf-quic-tls-07. IETF Secretariat, Oct.
2017. url: http://www.ietf.org/archive/id/draft-ietf-quic-tls-07.txt

(cit. on pp. 7, 109, 114).
[20] J. H. Saltzer, D. P. Reed, and D. D. Clark. “End-to-end Arguments in System

Design”. In: ACM Trans. Computer Systems 2.4 (Nov. 1984), pp. 277–288.
issn: 0734-2071. doi: 10.1145/357401.357402 (cit. on pp. 7, 8, 109).

118

https://www.ietf.org/archive/id/draft-ietf-taps-arch-02.txt
https://www.ietf.org/archive/id/draft-ietf-taps-interface-02.txt
https://www.ietf.org/archive/id/draft-ietf-taps-interface-02.txt
https://www.ietf.org/archive/id/draft-ietf-taps-impl-02.txt
https://www.ietf.org/archive/id/draft-ietf-taps-impl-02.txt
https://support.apple.com/en-us/HT205296
https://support.apple.com/en-us/HT205296
http://www.ietf.org/rfc/rfc6182.txt
https://doi.org/10.1145/2578508.2591369
http://www.ietf.org/archive/id/draft-ietf-quic-transport-07.txt
http://www.ietf.org/archive/id/draft-ietf-quic-transport-07.txt
http://www.ietf.org/archive/id/draft-ietf-quic-recovery-07.txt
http://www.ietf.org/archive/id/draft-ietf-quic-tls-07.txt
https://doi.org/10.1145/357401.357402

Bibliography

[21] B. Carpenter. Architectural Principles of the Internet. RFC 1958 (Informa-
tional). Updated by RFC 3439. June 1996. url: http://www.ietf.org/rfc/
rfc1958.txt (cit. on p. 8).

[22] R. Bush and D. Meyer. Some Internet Architectural Guidelines and Philoso-
phy. RFC 3439 (Informational). Dec. 2002. url: http://www.ietf.org/rfc/
rfc3439.txt (cit. on p. 8).

[23] J. Kempf, R. Austein, and IAB. The Rise of the Middle and the Future of
End-to-End: Reflections on the Evolution of the Internet Architecture. RFC
3724 (Informational). Mar. 2004. url: http://www.ietf.org/rfc/rfc3724.txt
(cit. on p. 8).

[24] Information technology – Open Systems Interconnection – Basic Reference
Model: The Basic Model. standard. Geneva, Switzerland: International Or-
ganization for Standardization, 1994. url: https://www.iso.org/standard/

20269.html (cit. on p. 8).
[25] D. D. Clark et al. “Tussle in cyberspace: defining tomorrow’s Internet”. In:

IEEE/ACM Transactions on Networking 13.3 (June 2005), pp. 462–475. issn:
1063-6692. doi: 10.1109/TNET.2005.850224 (cit. on p. 8).

[26] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol Version
2 (HTTP/2). RFC 7540 (Proposed Standard). May 2015. url: http://www.
ietf.org/rfc/rfc7540.txt (cit. on p. 12).

[27] G. Tsirtsis et al. Flow Bindings in Mobile IPv6 and Network Mobility (NEMO)
Basic Support. RFC 6089 (Proposed Standard). Jan. 2011. url: http://www.
ietf.org/rfc/rfc6089.txt (cit. on pp. 16, 17, 22, 114).

[28] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301
(Proposed Standard). Updated by RFCs 6040, 7619. Dec. 2005. url: http:

//www.ietf.org/rfc/rfc4301.txt (cit. on pp. 16, 114).
[29] CJ. Bernardos. Proxy Mobile IPv6 Extensions to Support Flow Mobility. RFC

7864 (Proposed Standard). May 2016. url: http : / / www . ietf . org / rfc /

rfc7864.txt (cit. on pp. 17, 20, 22, 114).
[30] D. Anipko. Multiple Provisioning Domain Architecture. RFC 7556 (Informa-

tional). June 2015. url: http://www.ietf.org/rfc/rfc7556.txt (cit. on
pp. 17–19, 25, 114).

[31] Srikanth Sundaresan et al. “Broadband internet performance: a view from the
gateway”. In: ACM CCR. Vol. 41. 4. ACM, 2011, pp. 134–145 (cit. on pp. 18,
62).

[32] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Autoconfigu-
ration. RFC 4862 (Draft Standard). Updated by RFC 7527. Sept. 2007. url:
http://www.ietf.org/rfc/rfc4862.txt (cit. on pp. 19, 114).

[33] Pierre Pfister et al. Discovering Provisioning Domain Names and Data. Internet-
Draft draft-bruneau-intarea-provisioning-domains-02. IETF Secretariat, July
2017. url: http : / / www . ietf . org / archive / id / draft - bruneau - intarea -

provisioning-domains-02.txt (cit. on p. 19).

119

http://www.ietf.org/rfc/rfc1958.txt
http://www.ietf.org/rfc/rfc1958.txt
http://www.ietf.org/rfc/rfc3439.txt
http://www.ietf.org/rfc/rfc3439.txt
http://www.ietf.org/rfc/rfc3724.txt
https://www.iso.org/standard/20269.html
https://www.iso.org/standard/20269.html
https://doi.org/10.1109/TNET.2005.850224
http://www.ietf.org/rfc/rfc7540.txt
http://www.ietf.org/rfc/rfc7540.txt
http://www.ietf.org/rfc/rfc6089.txt
http://www.ietf.org/rfc/rfc6089.txt
http://www.ietf.org/rfc/rfc4301.txt
http://www.ietf.org/rfc/rfc4301.txt
http://www.ietf.org/rfc/rfc7864.txt
http://www.ietf.org/rfc/rfc7864.txt
http://www.ietf.org/rfc/rfc7556.txt
http://www.ietf.org/rfc/rfc4862.txt
http://www.ietf.org/archive/id/draft-bruneau-intarea-provisioning-domains-02.txt
http://www.ietf.org/archive/id/draft-bruneau-intarea-provisioning-domains-02.txt

Bibliography

[34] B. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues. RFC 3234
(Informational). Feb. 2002. url: http://www.ietf.org/rfc/rfc3234.txt (cit.
on p. 19).

[35] Michio Honda et al. “Is It Still Possible to Extend TCP?” In: ACM IMC.
Berlin, Germany: ACM, 2011, pp. 181–194. isbn: 978-1-4503-1013-0. doi: 10.
1145/2068816.2068834. url: http://doi.acm.org/10.1145/2068816.2068834

(cit. on p. 19).
[36] Gregory Detal et al. “Revealing Middlebox Interference with Tracebox”. In:

ACM IMC. Barcelona, Spain: ACM, 2013, pp. 1–8. isbn: 978-1-4503-1953-9.
doi: 10.1145/2504730.2504757. url: http://doi.acm.org/10.1145/2504730.
2504757 (cit. on p. 19).

[37] Adnan Aijaz, Hamid Aghvami, and Mojdeh Amani. “A survey on mobile data
offloading: technical and business perspectives”. In: Wireless Communications,
IEEE Transactions on 20.2 (2013), pp. 104–112 (cit. on p. 20).

[38] Joohyun Lee et al. “Economics of WiFi offloading: Trading delay for cellular
capacity”. In: Wireless Communications, IEEE Transactions on 13.3 (2014),
pp. 1540–1554 (cit. on p. 20).

[39] Dave Allan and Hongyu LI. TR-348: Hybrid Access Broadband Network Archi-
tecture. Tech. rep. Broadband Forum, Aug. 2016. url: https://www.broadband-
forum.org/technical/download/TR-348.pdf (cit. on p. 20).

[40] T. Melia and S. Gundavelli. Logical-Interface Support for IP Hosts with Multi-
Access Support. RFC 7847 (Informational). May 2016. url: http://www.ietf.
org/rfc/rfc7847.txt (cit. on p. 20).

[41] S. Gundavelli et al. Proxy Mobile IPv6. RFC 5213 (Proposed Standard). Up-
dated by RFCs 6543, 7864. Aug. 2008. url: http : / / www . ietf . org / rfc /

rfc5213.txt (cit. on p. 20).
[42] Olivier Bonaventure, Mohamed Boucadair, and Bart Peirens. 0-RTT TCP

converters. Internet-Draft draft-bonaventure-mptcp-converters-01. IETF Sec-
retariat, July 2017. url: http://www.ietf.org/archive/id/draft-bonaventure-
mptcp-converters-01.txt (cit. on pp. 20, 23).

[43] D. Thaler and C. Hopps. Multipath Issues in Unicast and Multicast Next-Hop
Selection. RFC 2991 (Informational). Nov. 2000. url: http://www.ietf.org/
rfc/rfc2991.txt (cit. on pp. 22, 113).

[44] Varun Singh et al. Multipath RTP (MPRTP). Internet-Draft draft-ietf-avtcore-
mprtp-03. IETF Secretariat, July 2016. url: http://www.ietf.org/archive/
id/draft-ietf-avtcore-mprtp-03.txt (cit. on p. 23).

[45] R. Stewart et al. Sockets API Extensions for the Stream Control Transmission
Protocol (SCTP). RFC 6458 (Informational). Dec. 2011. url: http://www.

ietf.org/rfc/rfc6458.txt (cit. on p. 23).
[46] J. Jeong et al. IPv6 Router Advertisement Options for DNS Configuration.

RFC 6106 (Proposed Standard). Obsoleted by RFC 8106. Nov. 2010. url:
http://www.ietf.org/rfc/rfc6106.txt (cit. on p. 25).

120

http://www.ietf.org/rfc/rfc3234.txt
https://doi.org/10.1145/2068816.2068834
https://doi.org/10.1145/2068816.2068834
http://doi.acm.org/10.1145/2068816.2068834
https://doi.org/10.1145/2504730.2504757
http://doi.acm.org/10.1145/2504730.2504757
http://doi.acm.org/10.1145/2504730.2504757
https://www.broadband-forum.org/technical/download/TR-348.pdf
https://www.broadband-forum.org/technical/download/TR-348.pdf
http://www.ietf.org/rfc/rfc7847.txt
http://www.ietf.org/rfc/rfc7847.txt
http://www.ietf.org/rfc/rfc5213.txt
http://www.ietf.org/rfc/rfc5213.txt
http://www.ietf.org/archive/id/draft-bonaventure-mptcp-converters-01.txt
http://www.ietf.org/archive/id/draft-bonaventure-mptcp-converters-01.txt
http://www.ietf.org/rfc/rfc2991.txt
http://www.ietf.org/rfc/rfc2991.txt
http://www.ietf.org/archive/id/draft-ietf-avtcore-mprtp-03.txt
http://www.ietf.org/archive/id/draft-ietf-avtcore-mprtp-03.txt
http://www.ietf.org/rfc/rfc6458.txt
http://www.ietf.org/rfc/rfc6458.txt
http://www.ietf.org/rfc/rfc6106.txt

Bibliography

[47] C. Contavalli et al. Client Subnet in DNS Queries. RFC 7871 (Informational).
May 2016. url: http://www.ietf.org/rfc/rfc7871.txt (cit. on p. 25).

[48] T. Savolainen, J. Kato, and T. Lemon. Improved Recursive DNS Server Selec-
tion for Multi-Interfaced Nodes. RFC 6731 (Proposed Standard). Dec. 2012.
url: http://www.ietf.org/rfc/rfc6731.txt (cit. on p. 25).

[49] D. Wing and A. Yourtchenko. Happy Eyeballs: Success with Dual-Stack Hosts.
RFC 6555 (Proposed Standard). Apr. 2012. url: http://www.ietf.org/rfc/
rfc6555.txt (cit. on pp. 26, 52, 57, 113).

[50] M. Mathis et al. TCP Selective Acknowledgment Options. RFC 2018 (Proposed
Standard). Oct. 1996. url: http://www.ietf.org/rfc/rfc2018.txt (cit. on
p. 27).

[51] QUIC FEC v1. Feb. 2016. url: https : / / docs . google . com / document / d /

1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/ (visited on 09/27/2017) (cit.
on p. 28).

[52] Jari Arkko. Security and Pervasive Monitoring. Sept. 2013. url: https://

www.ietf.org/blog/2013/09/security-and-pervasive-monitoring/ (visited on
09/27/2017) (cit. on p. 28).

[53] Giorgos Papastergiou et al. “De-ossifying the internet transport layer: A survey
and future perspectives”. In: IEEE Communications Surveys & Tutorials 19.1
(), pp. 619–639. doi: 10.1109/COMST.2016.2626780 (cit. on p. 28).

[54] Michio Honda et al. “Is It Still Possible to Extend TCP?” In: ACM IMC.
Berlin, Germany: ACM, 2011, pp. 181–194. isbn: 978-1-4503-1013-0. doi: 10.
1145/2068816.2068834 (cit. on p. 29).

[55] Mirja Kuehlewind, Tommy Pauly, and Christopher Wood. Separating Crypto
Negotiation and Communication. Internet-Draft draft-kuehlewind-taps-crypto-
sep-00. IETF Secretariat, July 2017. url: http://www.ietf.org/archive/id/
draft-kuehlewind-taps-crypto-sep-00.txt (cit. on pp. 29, 36).

[56] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168 (Proposed Standard). Updated by RFCs
4301, 6040. Sept. 2001. url: http://www.ietf.org/rfc/rfc3168.txt (cit. on
pp. 29, 113).

[57] F. Baker and G. Fairhurst. IETF Recommendations Regarding Active Queue
Management. RFC 7567 (Best Current Practice). July 2015. url: http://www.
ietf.org/rfc/rfc7567.txt (cit. on pp. 29, 113).

[58] Olga Bondarenko et al. “Ultra-low Delay for All: Live Experience, Live Anal-
ysis”. In: Proceedings of the 7th International Conference on Multimedia Sys-
tems. MMSys ’16. Klagenfurt, Austria: ACM, 2016, 33:1–33:4. isbn: 978-1-
4503-4297-1. doi: 10.1145/2910017.2910633. url: http://doi.acm.org/10.

1145/2910017.2910633 (cit. on p. 29).
[59] C. Perkins. IP Mobility Support for IPv4, Revised. RFC 5944 (Proposed Stan-

dard). Nov. 2010. url: http://www.ietf.org/rfc/rfc5944.txt (cit. on p. 33).

121

http://www.ietf.org/rfc/rfc7871.txt
http://www.ietf.org/rfc/rfc6731.txt
http://www.ietf.org/rfc/rfc6555.txt
http://www.ietf.org/rfc/rfc6555.txt
http://www.ietf.org/rfc/rfc2018.txt
https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/
https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/
https://www.ietf.org/blog/2013/09/security-and-pervasive-monitoring/
https://www.ietf.org/blog/2013/09/security-and-pervasive-monitoring/
https://doi.org/10.1109/COMST.2016.2626780
https://doi.org/10.1145/2068816.2068834
https://doi.org/10.1145/2068816.2068834
http://www.ietf.org/archive/id/draft-kuehlewind-taps-crypto-sep-00.txt
http://www.ietf.org/archive/id/draft-kuehlewind-taps-crypto-sep-00.txt
http://www.ietf.org/rfc/rfc3168.txt
http://www.ietf.org/rfc/rfc7567.txt
http://www.ietf.org/rfc/rfc7567.txt
https://doi.org/10.1145/2910017.2910633
http://doi.acm.org/10.1145/2910017.2910633
http://doi.acm.org/10.1145/2910017.2910633
http://www.ietf.org/rfc/rfc5944.txt

Bibliography

[60] C. Perkins, D. Johnson, and J. Arkko. Mobility Support in IPv6. RFC 6275
(Proposed Standard). July 2011. url: http://www.ietf.org/rfc/rfc6275.txt
(cit. on p. 33).

[61] Monia Ghobadi et al. “Trickle: Rate Limiting YouTube Video Streaming”. In:
Presented as part of the 2012 USENIX Annual Technical Conference (USENIX
ATC 12). Boston, MA: USENIX Association, 2012, pp. 191–196. url: https://
www.usenix.org/conference/atc12/technical-sessions/presentation/ghobadi

(cit. on p. 40).
[62] Dynamic adaptive streaming over HTTP (DASH) - Part 1: Media presentation

description and segment formats. standard. Geneva, Switzerland: International
Organization for Standardization, 2011. url: https://www.iso.org/standard/
65274.html (cit. on pp. 45, 104).

[63] K. Nichols et al. Definition of the Differentiated Services Field (DS Field)
in the IPv4 and IPv6 Headers. RFC 2474 (Proposed Standard). Updated by
RFCs 3168, 3260. Dec. 1998. url: http://www.ietf.org/rfc/rfc2474.txt

(cit. on pp. 45, 113).
[64] D. Grossman. New Terminology and Clarifications for Diffserv. RFC 3260

(Informational). Apr. 2002. url: http://www.ietf.org/rfc/rfc3260.txt (cit.
on pp. 45, 113).

[65] H. Abbasi et al. “A Quality-of-Service Enhanced Socket API in GNU/Linux”.
In: Real-Time Linux Workshop. 2002 (cit. on p. 46).

[66] B. D. Higgins et al. “Intentional networking: opportunistic exploitation of
mobile network diversity”. In: ACM MobiCom. ACM, 2010, pp. 73–84 (cit. on
p. 46).

[67] N. Khademi et al. “NEAT: A Platform- and Protocol-Independent Internet
Transport API”. In: IEEE Communications Magazine 55.6 (2017), pp. 46–54.
issn: 0163-6804. doi: 10.1109/MCOM.2017.1601052 (cit. on pp. 46, 50, 111).

[68] J. Babiarz, K. Chan, and F. Baker. Configuration Guidelines for DiffServ
Service Classes. RFC 4594 (Informational). Updated by RFC 5865. Aug. 2006.
url: http://www.ietf.org/rfc/rfc4594.txt (cit. on p. 48).

[69] Brian Trammell, Colin Perkins, and Mirja Kuehlewind. “Post Sockets: To-
wards an Evolvable Network Transport Interface”. In: IFIP Networking Con-
ference. Stockholm, Sweden, July 2017. isbn: 978-3-901882-94-4. url: http:

//dl.ifip.org/db/conf/networking/networking2017/1570348319.pdf (cit. on
p. 50).

[70] Tommy Pauly. Guidelines for Racing During Connection Establishment. Internet-
Draft draft-pauly-taps-guidelines-01. IETF Secretariat, Oct. 2017. url: http:
//www.ietf.org/archive/id/draft-pauly-taps-guidelines-01.txt (cit. on
pp. 52, 54).

[71] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896 (Historic).
Obsoleted by RFC 7805. Jan. 1984. url: http://www.ietf.org/rfc/rfc896.txt
(cit. on p. 56).

122

http://www.ietf.org/rfc/rfc6275.txt
https://www.usenix.org/conference/atc12/technical-sessions/presentation/ghobadi
https://www.usenix.org/conference/atc12/technical-sessions/presentation/ghobadi
https://www.iso.org/standard/65274.html
https://www.iso.org/standard/65274.html
http://www.ietf.org/rfc/rfc2474.txt
http://www.ietf.org/rfc/rfc3260.txt
https://doi.org/10.1109/MCOM.2017.1601052
http://www.ietf.org/rfc/rfc4594.txt
http://dl.ifip.org/db/conf/networking/networking2017/1570348319.pdf
http://dl.ifip.org/db/conf/networking/networking2017/1570348319.pdf
http://www.ietf.org/archive/id/draft-pauly-taps-guidelines-01.txt
http://www.ietf.org/archive/id/draft-pauly-taps-guidelines-01.txt
http://www.ietf.org/rfc/rfc896.txt

Bibliography

[72] Giorgos Papastergiou et al. “On the Cost of Using Happy Eyeballs for Trans-
port Protocol Selection”. In: Proceedings of the 2016 Applied Networking Re-
search Workshop. ANRW ’16. Berlin, Germany: ACM, 2016, pp. 45–51. isbn:
978-1-4503-4443-2. doi: 10.1145/2959424.2959437 (cit. on p. 58).

[73] S. Egger et al. “Waiting times in quality of experience for web based services”.
In: Quality of Multimedia Experience (QoMEX), 2012 Fourth International
Workshop on. IEEE. July 2012, pp. 86–96. doi: 10.1109/QoMEX.2012.6263888
(cit. on p. 60).

[74] Conor Kelton et al. “Improving user perceived page load times using gaze”.
In: USENIX NSDI. Vol. 17. USENIX Association, 2017, pp. 545–559 (cit. on
p. 60).

[75] Jörg Wallerich et al. “A Methodology for Studying Persistency Aspects of
Internet Flows”. In: ACM CCR 35.2 (Apr. 2005), pp. 23–36. issn: 0146-4833.
doi: 10.1145/1064413.1064417. url: http://doi.acm.org/10.1145/1064413.
1064417 (cit. on p. 62).

[76] Sunghwan Ihm and Vivek S Pai. “Towards understanding modern web traffic”.
In: ACM IMC. ACM. 2011, pp. 295–312 (cit. on p. 66).

[77] Michael Butkiewicz, Harsha V Madhyastha, and Vyas Sekar. “Understanding
website complexity: measurements, metrics, and implications”. In: ACM IMC.
ACM. Nov. 2011, pp. 313–328. doi: 10.1145/2068816.2068846 (cit. on p. 66).

[78] Ravi Netravali et al. “Polaris: Faster Page Loads Using Fine-grained Depen-
dency Tracking”. In: USENIX NSDI. Santa Clara, CA: USENIX Association,
Mar. 2016. url: https://www.usenix.org/conference/nsdi16/technical-

sessions/presentation/netravali (cit. on p. 67).
[79] J. Chu et al. Increasing TCP’s Initial Window. RFC 6928 (Experimental).

Apr. 2013. url: http://www.ietf.org/rfc/rfc6928.txt (cit. on p. 68).
[80] Enric Pujol et al. “Back-Office Web Traffic on The Internet”. In: ACM IMC.

ACM. 2014, pp. 257–270 (cit. on p. 71).
[81] Stuart Sechrest. Tutorial Examples of Interprocess Communication in Berkeley

UNIX 4.2 BSD. Tech. rep. 191. University of California, Berkley, 1984. url:
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-84-

191.pdf (cit. on p. 80).
[82] Lucian Popa, Ali Ghodsi, and Ion Stoica. “HTTP As the Narrow Waist of the

Future Internet”. In: Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks. Hotnets-IX. Monterey, California: ACM, 2010, 6:1–
6:6. isbn: 978-1-4503-0409-2. doi: 10.1145/1868447.1868453 (cit. on p. 81).

[83] Philipp Richter et al. “Distilling the Internet’s Application Mix from Packet-
Sampled Traffic”. English. In: Passive and Active Measurement. Ed. by Je-
lena Mirkovic and Yong Liu. Vol. 8995. Lecture Notes in Computer Science.
Springer International Publishing, 2015, pp. 179–192. isbn: 978-3-319-15508-1.
doi: 10.1007/978-3-319-15509-8_14 (cit. on p. 81).

123

https://doi.org/10.1145/2959424.2959437
https://doi.org/10.1109/QoMEX.2012.6263888
https://doi.org/10.1145/1064413.1064417
http://doi.acm.org/10.1145/1064413.1064417
http://doi.acm.org/10.1145/1064413.1064417
https://doi.org/10.1145/2068816.2068846
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
http://www.ietf.org/rfc/rfc6928.txt
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-84-191.pdf
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-84-191.pdf
https://doi.org/10.1145/1868447.1868453
https://doi.org/10.1007/978-3-319-15509-8_14

Bibliography

[84] Carl A Sunshine. Host Software. Tech. rep. 178. 1981. url: http://www.ietf.
org/rfc/ien/ien178.txt (cit. on p. 81).

[85] Linux Foundation. Netlink(7) Linux Programmer’s Manual. url: http://man7.
org/linux/man-pages/man7/netlink.7.html (cit. on pp. 95, 102).

[86] Patrick Kutter. “Improving Video Streaming QoE Through Multi Access Poli-
cies”. MA thesis. TU Berlin, Sept. 2015 (cit. on p. 104).

[87] Apple Inc. About Wi-Fi Assist. 2018. url: https://developer.apple.com/

documentation/network (visited on 08/29/2018) (cit. on p. 111).
[88] V. K. Gurbani et al. “A survey of research on the application-layer traffic

optimization problem and the need for layer cooperation”. In: IEEE Com-
munications Magazine 47.8 (Aug. 2009), pp. 107–112. issn: 0163-6804. doi:
10.1109/MCOM.2009.5181900 (cit. on p. 111).

[89] R. Alimi et al. Application-Layer Traffic Optimization (ALTO) Protocol. RFC
7285 (Proposed Standard). Sept. 2014. url: http : / / www . ietf . org / rfc /

rfc7285.txt (cit. on p. 111).
[90] R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed Stan-

dard). Updated by RFCs 6096, 6335, 7053. Sept. 2007. url: http://www.ietf.
org/rfc/rfc4960.txt (cit. on p. 114).

[91] J. Rosenberg et al. SIP: Session Initiation Protocol. RFC 3261 (Proposed
Standard). Updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626, 5630,
5922, 5954, 6026, 6141, 6665, 6878, 7462, 7463, 8217. June 2002. url: http:
//www.ietf.org/rfc/rfc3261.txt (cit. on p. 114).

[92] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STANDARD).
Updated by RFCs 1122, 3168, 6093, 6528. Sept. 1981. url: http://www.ietf.
org/rfc/rfc793.txt (cit. on p. 114).

[93] J. Postel. User Datagram Protocol. RFC 768 (INTERNET STANDARD). Aug.
1980. url: http://www.ietf.org/rfc/rfc768.txt (cit. on p. 115).

124

http://www.ietf.org/rfc/ien/ien178.txt
http://www.ietf.org/rfc/ien/ien178.txt
http://man7.org/linux/man-pages/man7/netlink.7.html
http://man7.org/linux/man-pages/man7/netlink.7.html
https://developer.apple.com/documentation/network
https://developer.apple.com/documentation/network
https://doi.org/10.1109/MCOM.2009.5181900
http://www.ietf.org/rfc/rfc7285.txt
http://www.ietf.org/rfc/rfc7285.txt
http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc768.txt

	Abstract
	Zusammenfassung
	Acknowledgements
	Publications & Collaborations
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Contributions
	1.3 Structure of this Thesis

	2 Transport Options
	2.1 The Internet Protocol Stack
	2.2 Revisiting the End-to-End Argument
	2.3 Communication Units
	2.3.1 Problem Statement
	2.3.2 Communication Units: A Semantic Perspective
	2.3.3 Communication Unit Granularities

	2.4 Analysis: Communication Units and PDUs
	2.4.1 Application Layer
	2.4.2 Transport layer
	2.4.3 Network Layer

	2.5 Path Selection
	2.5.1 Path Selection vs. Scheduling
	2.5.2 Path Characteristics
	2.5.3 Provisioning Domains
	2.5.4 On-Path Network Functions
	2.5.5 Path Selection through Network Function
	2.5.6 Path Selection and Cellular Networks

	2.6 Analysis: Path Selection Opportunities
	2.6.1 Network Layer
	2.6.2 Transport Layer
	2.6.3 Application Layer

	2.7 Endpoint Selection
	2.7.1 Name Resolution

	2.8 Protocol Stack Composition
	2.9 Transport Mechanisms for Protocol Stack Composition
	2.9.1 Reliability
	2.9.1.1 Retransmissions
	2.9.1.2 Forward Error Correction

	2.9.2 Ordering
	2.9.3 Integrity Protection
	2.9.4 Confidentiality Protection
	2.9.5 Authenticity Protection
	2.9.6 Congestion Control
	2.9.7 Multiplexing
	2.9.8 Chunking
	2.9.9 Path Selection
	2.9.10 Mobility

	2.10 Analysis: Transport Mechanisms
	2.10.1 Congestion Control
	2.10.2 Ordering and Reliability
	2.10.3 Integrity, Confidentiality, and Authenticity Protection
	2.10.4 Chunking
	2.10.5 Multiplexing

	2.11 Cost and Granularity Tradeoffs
	2.12 Conclusion

	3 Socket Intents: Expressing Applications' Intents
	3.1 Motivation
	3.2 Problem Statement
	3.3 Socket Intents Concept
	3.4 Socket Intent Types
	3.5 Usage Examples
	3.5.1 OS Upgrade
	3.5.2 HTTP Streaming
	3.5.3 SSH

	3.6 Related Work
	3.7 Discussion
	3.7.1 Socket Intents and API behavior
	3.7.2 Applicability of Socket Intents to different Communication Units
	3.7.3 Interactions between Socket Intents and QoS
	3.7.4 Security Considerations
	3.7.5 Interactions between Socket Intents and Traffic Pattern

	3.8 Conclusion

	4 Policy: Choosing Transport Options
	4.1 Policy Dependencies
	4.2 Determining Transport Configurations
	4.3 Policy entries
	4.4 Filtering and Ranking Transport Configurations
	4.5 Probing Transport Configurations: Happy Eyeballs on Steroids
	4.6 Conclusion

	5 Performance Study: Web Site Delivery
	5.1 Methodology
	5.1.1 Metric: Page Load Time
	5.1.2 Using a Custom Simulator
	5.1.3 Network Scenario
	5.1.4 Connection Limits and Connection Reuse
	5.1.5 TCP Simulation
	5.1.6 MPTCP Simulation

	5.2 Simulator Policies
	5.2.1 Baseline Policies
	5.2.2 MPTCP
	5.2.3 Earliest Arrival First Policy

	5.3 Simulator Workload
	5.3.1 Web Workload Acquisition
	5.3.2 Web Workload Properties
	5.3.3 Web Object Dependencies

	5.4 Web Transfer Simulator
	5.4.1 Simulator Design
	5.4.2 Simulator Implementation

	5.5 Web Transfer Simulator Validation
	5.5.1 Handcrafted Scenarios
	5.5.2 Simulator vs. Actual Web Load Times
	5.5.3 Simulator vs. Multi-Access Prototype

	5.6 Evaluation
	5.6.1 Experimental Design
	5.6.2 Benefits of Combining Multiple Paths
	5.6.3 Benefits of Using the Application-Aware Policies with MPTCP
	5.6.4 Explaining Page Load Time Speedups

	5.7 Conclusion

	6 Multi-Access Prototype for BSD Sockets
	6.1 Lecacy of the Socket API
	6.1.1 File Descriptor vs. Transport Protocol Semantics
	6.1.2 Multi-Homing and Multiple Access Networks
	6.1.3 Name Resolution

	6.2 Design Criteria for Multi-Access Prototype
	6.3 Implementation
	6.3.1 Augmented Socket API
	6.3.1.1 Classic API Variant
	6.3.1.2 Augmented Name Resolution API Variant
	6.3.1.3 Message-Granularity API Variant

	6.3.2 The Multiple Access Manager (MAM)
	6.3.3 Path Characteristics Data Collectors
	6.3.4 Orchestrating Multipath TCP
	6.3.5 Policy Implementation

	6.4 A Web Proxy with Socket Intents
	6.4.1 Testbed Setup
	6.4.2 Cross-Validation of Proxy and Simulator
	6.4.3 Socket Intent Benefits in the Testbed

	6.5 Lessons Learned
	6.5.1 Platform Dependent APIs
	6.5.2 The Missing Link to Name Resolution
	6.5.3 Asynchronous I/O
	6.5.4 Here Be Dragons hiding in Shadow Structures
	6.5.5 Changing Applications to Use Better APIs is Hard

	6.6 Conclusion and Outlook

	7 Conclusion
	7.1 Summary
	7.2 Lessons Learned
	7.3 Future Work
	7.4 Outlook

	Glossary
	Bibliography

